The molecular modeling toolkit: A new approach to molecular simulations

The Molecular Modeling Toolkit is a library that implements common molecular simulation techniques, with an emphasis on biomolecular simulations. It uses modern software engineering techniques (object‐oriented design, a high‐level language) to overcome limitations associated with the large monolithic simulation programs that are commonly used for biomolecules. Its principal advantages are (1) easy extension and combination with other libraries due to modular library design; (2) a single high‐level general‐purpose programming language (Python) is used for library implementation as well as for application scripts; (3) use of documented and machine‐independent formats for all data files; and (4) interfaces to other simulation and visualization programs. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 79–85, 2000

[1]  John A. Board,et al.  A portable distributed implementation of the parallel multipole tree algorithm , 1995, Proceedings of the Fourth IEEE International Symposium on High Performance Distributed Computing.

[2]  Geoffrey M. Davis,et al.  NetCDF User''s Guide for C , 1997 .

[3]  Gerald R. Kneller,et al.  Superposition of molecular structures using quaternions , 1991 .

[4]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[5]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[6]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[7]  Konrad Hinsen,et al.  A potential function for computer simulation studies of proton transfer in acetylacetone , 1997, J. Comput. Chem..

[8]  K. Hinsen,et al.  Analysis of domain motions in large proteins , 1999, Proteins.

[9]  K. Hinsen,et al.  Tertiary and quaternary conformational changes in aspartate transcarbamylase: a normal mode study , 1999, Proteins.

[10]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[11]  P. Bank,et al.  Protein Data Bank Contents Guide: Atomic Coordinate Entry Format , 1999 .

[12]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[13]  Konrad Hinsen,et al.  Numerical Python , 1996 .

[14]  K. Hinsen Analysis of domain motions by approximate normal mode calculations , 1998, Proteins.

[15]  Gerald R. Kneller,et al.  nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations , 1995 .

[16]  Chris Sander,et al.  The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies , 1995, J. Comput. Chem..

[17]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[18]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[19]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[20]  Kneller,et al.  Nosé-Andersen dynamics of partially rigid molecules: Coupling all degrees of freedom to heat and pressure baths. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.