Spatial Signal Attenuation Model of Active RFID Tags

How to achieve desired accuracy of RFID localization is challenging for high dynamic and sparse environments, especially for anisotropic RFID tags. We introduce a new method of measuring location of the active RFID tags in three-dimension space to improve localization accuracy. This research (i) provides directional signal-distribution models for both horizontal and vertical orientation of anisotropic active RFID tags, (ii) improves an attenuation model of RF signal with transmitting distance for real applications and (iii) deduces a spatial signal attenuation model of an active RFID tag (SSAM). The accuracy of the model is less than 4 dB for more than probability 50% based on the experimental results, location accuracy is up to 1 meter in 400 m2 experimental field.

[1]  Samer S. Saab,et al.  A Standalone RFID Indoor Positioning System Using Passive Tags , 2011, IEEE Transactions on Industrial Electronics.

[2]  Moeness G. Amin,et al.  Multifrequency-based range estimation of RFID Tags , 2009, 2009 IEEE International Conference on RFID.

[3]  Sarangapani Jagannathan,et al.  Localization of RFID Tags Using Stochastic Tunneling , 2013, IEEE Transactions on Mobile Computing.

[4]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[5]  Andreas Stelzer,et al.  UHF RFID Localization Based on Phase Evaluation of Passive Tag Arrays , 2015, IEEE Transactions on Instrumentation and Measurement.

[6]  Ergun Erçelebi,et al.  Advanced boundary virtual reference algorithm for an indoor system using an active RFID interrogator and transponder , 2016 .

[7]  Francesco Martinelli,et al.  A Robot Localization System Combining RSSI and Phase Shift in UHF-RFID Signals , 2015, IEEE Transactions on Control Systems Technology.

[8]  Sung Ho Cho,et al.  Advanced LANDMARC with adaptive k-nearest algorithm for RFID location system , 2010, 2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content.

[9]  P. Popovski,et al.  Orientation Sensing Using Multiple Passive RFID Tags , 2012, IEEE Antennas and Wireless Propagation Letters.

[10]  K. V. S. Rao,et al.  Phase based spatial identification of UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[11]  Laurence T. Yang,et al.  An Incremental CFS Algorithm for Clustering Large Data in Industrial Internet of Things , 2017, IEEE Transactions on Industrial Informatics.

[12]  Wenyan Wu,et al.  Efficient Object Localization Using Sparsely Distributed Passive RFID Tags , 2013, IEEE Transactions on Industrial Electronics.

[13]  Lun-Ping Hung Using a hybrid algorithm and active RFID to construct a seamless infant rooming-in tracking mechanism , 2015, Int. J. Ad Hoc Ubiquitous Comput..

[14]  Chuan Wang,et al.  Development of plough-able RFID sensor network systems for precision agriculture , 2014, 2014 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet).

[15]  M. H. Ariff,et al.  Design and development of UHF RFID reader antenna for livestock monitoring , 2014, 2014 IEEE 5th Control and System Graduate Research Colloquium.

[16]  Lingfei Mo,et al.  Two-dimension localization of passive RFID tags using AOA estimation , 2011, 2011 IEEE International Instrumentation and Measurement Technology Conference.

[17]  Yu-Chih Huang,et al.  A RFID Field Operation System Design for Agricultural Traceability , 2010, 2010 First International Conference on Pervasive Computing, Signal Processing and Applications.

[18]  Ivan Marsic,et al.  Non-intrusive localization of passive RFID tagged objects in an indoor workplace , 2011, 2011 IEEE International Conference on RFID-Technologies and Applications.

[19]  Hua-Ming Chen,et al.  Design of an Omnidirectional Polarized RFID Tag Antenna for Safety Glass Applications , 2012, IEEE Transactions on Antennas and Propagation.

[20]  Fernando Las Heras Andres,et al.  A received signal strength RFID-based indoor location system , 2017 .

[21]  Zhi Zhang,et al.  Item-Level Indoor Localization With Passive UHF RFID Based on Tag Interaction Analysis , 2014, IEEE Transactions on Industrial Electronics.

[22]  Yuusuke Kawakita,et al.  Active RFID Attached Object Clustering Method with New Evaluation Criterion for Finding Lost Objects , 2017, Mob. Inf. Syst..

[23]  Hervé Piégay,et al.  Assessment of a new solution for tracking pebbles in rivers based on active RFID , 2017 .

[24]  Hyoukryeol Choi,et al.  3-D Tag-Based RFID System for Recognition of Object , 2009, IEEE Transactions on Automation Science and Engineering.

[25]  Shuji Hashimoto,et al.  An intelligent localization algorithm using read time of RFID system , 2010, Adv. Eng. Informatics.

[26]  Rebecca Angeles,et al.  Rfid Technologies: Supply-Chain Applications and Implementation Issues , 2004, Inf. Syst. Manag..

[27]  Victor C. M. Leung,et al.  Predicting Temporal Social Contact Patterns for Data Forwarding in Opportunistic Mobile Networks , 2017, IEEE Transactions on Vehicular Technology.

[28]  M. Bolic,et al.  Novel Semi-Passive RFID System for Indoor Localization , 2013, IEEE Sensors Journal.

[29]  Laurence T. Yang,et al.  A Tucker Deep Computation Model for Mobile Multimedia Feature Learning , 2017, ACM Trans. Multim. Comput. Commun. Appl..

[30]  Xiuwen Liu,et al.  Accurate localization of RFID tags using phase difference , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[31]  Xiangyu Wang,et al.  Spatial and Temporal Analysis on the Distribution of Active Radio-Frequency Identification (RFID) Tracking Accuracy with the Kriging Method , 2014, Sensors.

[32]  Heng Zhang,et al.  Analysis of event-driven warning message propagation in Vehicular Ad Hoc Networks , 2017, Ad Hoc Networks.

[33]  Jinlong Wang,et al.  Iterative Phase Reconstruction and Weighted Localization Algorithm for Indoor RFID-Based Localization in NLOS Environment , 2014, IEEE Sensors Journal.

[34]  Nak Young Chong,et al.  Direction Sensing RFID Reader for Mobile Robot Navigation , 2009, IEEE Transactions on Automation Science and Engineering.

[35]  K. Jaakkola,et al.  Phase-Based UHF RFID Tracking With Nonlinear Kalman Filtering and Smoothing , 2012, IEEE Sensors Journal.

[36]  Xiangyu Wang,et al.  Evaluating the Performance of Absolute RSSI Positioning Algorithm-Based Microzoning and RFID in Construction Materials Tracking , 2014 .

[37]  Jie Wu,et al.  Energy Efficiency and Contact Opportunities Tradeoff in Opportunistic Mobile Networks , 2016, IEEE Transactions on Vehicular Technology.

[38]  Takahiro Hara,et al.  Insights of Top- $k$ Query in Duty-Cycled Wireless Sensor Networks , 2015, IEEE Transactions on Industrial Electronics.

[39]  M. Bouet,et al.  RFID tags: Positioning principles and localization techniques , 2008, 2008 1st IFIP Wireless Days.

[40]  Panlong Yang,et al.  R-TTWD: Robust Device-Free Through-The-Wall Detection of Moving Human With WiFi , 2017, IEEE Journal on Selected Areas in Communications.

[41]  Burkhard Stadlmann,et al.  Analysis of an UHF RFID System for interior position sensing , 2008 .