The Extended Euclidian Algorithm on Polynomials, and the Computational Efficiency of Hyperelliptic Cryptosystems

After generalising two reduction algorithms tocharacteristic 2, we analyse the average complexity of thearithmetic in hyperelliptic Jacobians over any finite field.To this purpose we determine the exact average number offield operations for computing the greatest common divisor ofpolynomials over a finite field by the extended Euclidianalgorithm.

[1]  E. Artin,et al.  Quadratische Körper im Gebiete der höheren Kongruenzen. I. , 1924 .

[2]  Nigel P. Smart,et al.  The Discrete Logarithm Problem on Elliptic Curves of Trace One , 1999, Journal of Cryptology.

[3]  Arnold Knopfmacher,et al.  The exact length of the Euclidean algorithm in [ X ] , 1988 .

[4]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[5]  Neal Koblitz,et al.  Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.

[6]  Leonard M. Adleman,et al.  A subexponential algorithm for discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields , 1994, ANTS.

[7]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[8]  Andreas Stein,et al.  Smooth ideals in hyperelliptic function fields , 2001, Math. Comput..

[9]  Takakazu Satoh,et al.  Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves , 1998 .

[10]  Andreas Enge,et al.  Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.

[11]  Sachar Paulus,et al.  Comparing Real and Imaginary Arithmetics for Divisor Class Groups of Hyperelliptic Curves , 1998, ANTS.

[12]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[13]  Andreas Enge,et al.  Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential time , 2002, Math. Comput..

[14]  Andreas Stein,et al.  Computing discrete logarithms in real quadratic congruence function fields of large genus , 1999, Math. Comput..

[15]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1993, IEEE Trans. Inf. Theory.

[16]  R. Zuccherato,et al.  An elementary introduction to hyperelliptic curves , 1996 .

[17]  Igor A. Semaev,et al.  Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p , 1998, Math. Comput..

[18]  G. Frey,et al.  A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .

[19]  Joachim von zur Gathen,et al.  Analysis of Euclidean Algorithms for Polynomials over Finite Fields , 1990, J. Symb. Comput..

[20]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[21]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[22]  Jeffrey C. Lagarias,et al.  Cryptology and Computational Number Theory , 1997 .

[23]  D. Cantor Computing in the Jacobian of a hyperelliptic curve , 1987 .