Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids.

We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C(6) and C(9), are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C(60) dimer, a peptide (Ala(10)), an intercalated drug-DNA model [ellipticine-d(CG)(2)], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

[1]  A Koide,et al.  A new expansion for dispersion forces and its application , 1976 .

[2]  W Michael Brown,et al.  Efficient hybrid evolutionary optimization of interatomic potential models. , 2010, The Journal of chemical physics.

[3]  K. Tang Dynamic Polarizabilities and van der Waals Coefficients , 1969 .

[4]  Polarizable and nonpolarizable force fields for alkyl nitrates. , 2008, The journal of physical chemistry. B.

[5]  S. Price The computational prediction of pharmaceutical crystal structures and polymorphism. , 2004, Advanced drug delivery reviews.

[6]  S. Grimme,et al.  Cooperativity in noncovalent interactions of biologically relevant molecules. , 2009, Physical chemistry chemical physics : PCCP.

[7]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[8]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory of three-body nonadditivity in Ar trimer , 1997 .

[9]  Ashok Kumar,et al.  Dipole oscillator strength distributions, properties, and dispersion energies for ethylene, propene, and 1-butene , 2007 .

[10]  D. J. Dawson,et al.  Dipole oscillator strength distributions, sums, and some related properties for Li, N, O, H2, N2, O2, NH3, H2O, NO, and N2O , 1977 .

[11]  Tejender S. Thakur,et al.  Significant progress in predicting the crystal structures of small organic molecules--a report on the fourth blind test. , 2009, Acta crystallographica. Section B, Structural science.

[12]  Y. Kim Nonadditive three-body interactions of rare-gas atoms. II. Intermediate and large distances , 1975 .

[13]  Ashok Kumar,et al.  Dipole oscillator strength properties and dispersion energies for SiH4 , 2003 .

[14]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[15]  Ashcroft,et al.  Fluctuation attraction in condensed matter: A nonlocal functional approach. , 1991, Physical review. B, Condensed matter.

[16]  N. Bartelt,et al.  Growth of multilayer ice films and the formation of cubic ice imaged with STM , 2008 .

[17]  Beate Paulus,et al.  Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids , 2000 .

[18]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[19]  W. J. Meath,et al.  Pseudo-spectral dipole oscillator strength distributions for the normal alkanes through octane and the evaluation of some related dipole-dipole and triple-dipole dispersion interaction energy coefficients , 1980 .

[20]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[21]  E. Cox Crystal Structure of Benzene , 1958 .

[22]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[23]  Krzysztof Szalewicz,et al.  Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions , 2006 .

[24]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[25]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[26]  P. Feibelman Lattice match in density functional calculations: ice Ih vs. beta-AgI. , 2008, Physical chemistry chemical physics : PCCP.

[27]  Katie A. Maerzke,et al.  Self-consistent polarization density functional theory: application to argon. , 2009, The journal of physical chemistry. A.

[28]  F. Leusen,et al.  A major advance in crystal structure prediction. , 2008, Angewandte Chemie.

[29]  W. Kohn,et al.  Van der Waals Forces in the Noble Metals. , 1975 .

[30]  W. J. Meath,et al.  Representations of dispersion energy damping functions for interactions of closed shell atoms and molecules , 1995 .

[31]  Ursula Rothlisberger,et al.  Variational particle number approach for rational compound design. , 2005, Physical review letters.

[32]  Loubeyre Three-body-exchange interaction in dense rare gases. , 1988, Physical review. B, Condensed matter.

[33]  Alexandre Tkatchenko,et al.  Dispersion-corrected Møller-Plesset second-order perturbation theory. , 2009, The Journal of chemical physics.

[34]  A. Enders,et al.  Structural transition in (C 60 ) n clusters , 2002 .

[35]  W. J. Meath,et al.  Dipole oscillator strength distributions, sums, and dispersion energy coefficients for CO and CO2☆ , 1982 .

[36]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[37]  P. Geerlings,et al.  The use of atomic intrinsic polarizabilities in the evaluation of the dispersion energy. , 2007, The Journal of chemical physics.

[38]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[39]  J. Israelachvili Intermolecular and surface forces , 1985 .

[40]  O. A. V. Lilienfeld,et al.  Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT. , 2007, The journal of physical chemistry. B.

[41]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[42]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[43]  Annamaria Fiethen,et al.  Stacking energies for average B-DNA structures from the combined density functional theory and symmetry-adapted perturbation theory approach. , 2008, Journal of the American Chemical Society.

[44]  R. Podeszwa,et al.  Three-body symmetry-adapted perturbation theory based on Kohn-Sham description of the monomers. , 2007, The Journal of chemical physics.

[45]  Richard Alan Lesar Electron-gas plus damped-dispersion model for intermolecular forces. The rare-gas and hydrogen-helium, hydrogen-neon, and hydrogen-argon potentials , 1984 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[48]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[49]  Aurélien Grosdidier,et al.  Docking, virtual high throughput screening and in silico fragment-based drug design , 2009, Journal of cellular and molecular medicine.

[50]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  K. Tang,et al.  A combining rule calculation of the ground state van der Waals potentials of the mercury rare-gas complexes. , 2009, The Journal of chemical physics.

[52]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[53]  M. Yin,et al.  Ground-state properties of diamond , 1981 .

[54]  Pavel Hobza,et al.  State-of-the-art correlated ab initio potential energy curves for heavy rare gas dimers: Ar2, Kr2, and Xe2 , 2003 .

[55]  R. Gordon,et al.  Theory for the Forces between Closed‐Shell Atoms and Molecules , 1972 .

[56]  Y. Kim Nonadditive three-body interactions of rare-gas atoms. I. Small and intermediate distances , 1975 .

[57]  Ashok Kumar Reliable isotropic dipole properties and dispersion energy coefficients for CCl4 , 2002 .

[58]  Yan Li,et al.  Ab initio calculation of van der Waals bonded molecular crystals. , 2009, Physical review letters.

[59]  Thomas Bredow,et al.  Binding energy of adsorbates on a noble-metal surface: exchange and correlation effects. , 2008, Physical review letters.

[60]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[61]  Georg Kresse,et al.  Accurate bulk properties from approximate many-body techniques. , 2009, Physical review letters.

[62]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[63]  Krzysztof Szalewicz,et al.  Dispersion energy from density-functional theory description of monomers. , 2003, Physical review letters.

[64]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[65]  O. A. von Lilienfeld,et al.  Alchemical Variations of Intermolecular Energies According to Molecular Grand-Canonical Ensemble Density Functional Theory. , 2007, Journal of chemical theory and computation.

[66]  M. Scheffler,et al.  Structural Transitions in the Polyalanine α-Helix under Uniaxial Strain , 2005 .

[67]  K. Szalewicz,et al.  THREE-BODY CONTRIBUTION TO BINDING ENERGY OF SOLID ARGON AND ANALYSIS OF CRYSTAL STRUCTURE , 1997 .

[68]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[69]  Ashok Kumar,et al.  Dipole properties, dispersion energy coefficients, and integrated oscillator strengths for SF6 , 1985 .

[70]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[71]  Aurélien Grosdidier,et al.  Blind docking of 260 protein–ligand complexes with EADock 2.0 , 2009, J. Comput. Chem..

[72]  K. Szalewicz,et al.  On the importance of many-body forces in clusters and condensed phase , 2005 .

[73]  Donald G Truhlar,et al.  Benchmark Databases for Nonbonded Interactions and Their Use To Test Density Functional Theory. , 2005, Journal of chemical theory and computation.

[74]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[75]  K. Tang,et al.  The van der Waals potentials between all the rare gas atoms from He to Rn , 2003 .

[76]  Ilya G. Kaplan,et al.  Intermolecular interactions : physical picture, computational methods, model potentials , 2006 .

[77]  D. D. Richardson Van der Waals electron correlation energy in silicon , 1978 .

[78]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[79]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.

[80]  Ashok Kumar,et al.  Dipole oscillator strengths, dipole properties and dispersion energies for SiF4 , 2003 .

[81]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[82]  Matthias Scheffler,et al.  Exploring the random phase approximation: Application to CO adsorbed on Cu(111) , 2009 .

[83]  A. Dalgarno,et al.  Linear response time-dependent density functional theory for van der Waals coefficients. , 2004, The Journal of chemical physics.

[84]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[85]  M. Karplus,et al.  Padé-Approximant Calculation of the Nonretarded van der Waals Coefficients for Two and Three Helium Atoms , 1968 .

[86]  H. H. Chen,et al.  Thermodynamic consistency of vapor pressure and calorimetric data for argon, krypton, and xenon , 1977 .

[87]  O. A. von Lilienfeld,et al.  Molecular grand-canonical ensemble density functional theory and exploration of chemical space. , 2006, The Journal of chemical physics.

[88]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[89]  Alexandre Tkatchenko,et al.  Popular Kohn-Sham density functionals strongly overestimate many-body interactions in van der Waals systems , 2008 .

[90]  J. Černý,et al.  Double-helical --> ladder structural transition in the B-DNA is induced by a loss of dispersion energy. , 2008, Journal of the American Chemical Society.

[91]  William J. Meath,et al.  Dipole oscillator strength properties and dispersion energies for acetylene and benzene , 1992 .

[92]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[93]  Jianmin Tao,et al.  Tests of a ladder of density functionals for bulk solids and surfaces , 2004 .

[94]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[95]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[96]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[97]  B. Rice,et al.  Predicting structure of molecular crystals from first principles. , 2008, Physical review letters.

[98]  Krzysztof Szalewicz,et al.  Predictions of the Properties of Water from First Principles , 2007, Science.

[99]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[100]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[101]  V. Adrian Parsegian,et al.  Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2005 .

[102]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[103]  Ashok Kumar,et al.  Dipole oscillator strength distributions, properties and dispersion energies for the dimethyl, diethyl and methyl–propyl ethers , 2008 .

[104]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[105]  Marc-Antoine Perrin,et al.  Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. , 2005, The journal of physical chemistry. B.