Visual Approaches for Handle Recognition

Objects can be identified in images extracting local image descriptors for interesting regions. In this paper, instead of making the handle identification process rely in the keypoint detection/matching process only, we present a method that first extracts from the image a region of interest (ROI) that with high probability contains the handle. This subimage is then processed by the keypoint detection/matching algorithm. Two methods for extracting the ROI are compared, Circle Hough Transform (CHT) and blobs, and combined with three descriptor extraction methods: SIFT, SURF and USURF.

[1]  J. Kittler,et al.  Comparative study of Hough Transform methods for circle finding , 1990, Image Vis. Comput..

[2]  Myo-Taeg Lim,et al.  Door Traversing for a Vision-Based Mobile Robot Using PCA , 2005, KES.

[3]  L. Munari How the body shapes the way we think — a new view of intelligence , 2009 .

[4]  Luis Payá,et al.  Monte Carlo Localization Using SIFT Features , 2005, IbPRIA.

[5]  Stefan B. Williams,et al.  Reduced SIFT Features For Image Retrieval And Indoor Localisation , 2004 .

[6]  Andreas Zell,et al.  Appearance-based Localization of Mobile Robots using Local Integral Invariants , 2006, IAS.

[7]  Henrik I. Christensen,et al.  Vision-based door-traversal for autonomous mobile robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[8]  Richard T. Vaughan,et al.  The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems , 2003 .

[9]  Basilio Sierra,et al.  SORGIN : A SOFTWARE FRAMEWORK FOR BEHAVIOR CONTROL IMPLEMENTATION , 2003 .

[10]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[11]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[12]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[14]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[15]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[16]  Anders Orebäck,et al.  An architecture for indoor navigation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Lars Petersson,et al.  Visually guided manipulation tasks , 2002, Robotics Auton. Syst..

[18]  Rafael Muñoz-Salinas,et al.  Detection of doors using a genetic visual fuzzy system for mobile robots , 2006, Auton. Robots.

[19]  Basilio Sierra,et al.  On the use of Bayesian Networks to develop behaviours for mobile robots , 2007, Robotics Auton. Syst..

[20]  Basilio Sierra,et al.  DOOR HANDLE IDENTIFICATION: A THREE-STAGE APPROACH , 2007 .

[21]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[22]  Basilio Sierra,et al.  Learning to traverse doors using visual information , 2002, Math. Comput. Simul..

[23]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.