Opinion mining for app reviews: an analysis of textual representation and predictive models

[1]  Senthil Mani,et al.  Fault in your stars: an analysis of Android app reviews , 2017, COMAD/CODS.

[2]  Zhu Zhang,et al.  Utility scoring of product reviews , 2006, CIKM '06.

[3]  Andi Rexha,et al.  An unsupervised aspect extraction strategy for monitoring real-time reviews stream , 2019, Inf. Process. Manag..

[4]  Marie-Francine Moens,et al.  A survey on the application of recurrent neural networks to statistical language modeling , 2015, Comput. Speech Lang..

[5]  Mohamed Wiem Mkaouer,et al.  A Multi-label Active Learning Approach for Mobile App User Review Classification , 2019, KSEM.

[6]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[7]  Yanchun Zhang,et al.  Helpfulness Prediction for Online Reviews with Explicit Content-Rating Interaction , 2019, WISE.

[8]  Joachim Denzler,et al.  One-class classification with Gaussian processes , 2013, Pattern Recognit..

[9]  Fabrício Benevenuto,et al.  Sentiment Analysis Methods for Social Media , 2015, WebMedia.

[10]  Heng Yang,et al.  LCF: A Local Context Focus Mechanism for Aspect-Based Sentiment Classification , 2019, Applied Sciences.

[11]  Nadia L. Kudraszow,et al.  Uniform consistency of kNN regressors for functional variables , 2013 .

[12]  Michael Mayo,et al.  Comparing High Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words for Predicting Medical Codes , 2020, ACIIDS.

[13]  Lingling Zhao,et al.  Sentiment Analysis Based Requirement Evolution Prediction , 2019, Future Internet.

[14]  Michael Sedlmair,et al.  More than Bags of Words: Sentiment Analysis with Word Embeddings , 2018 .

[15]  Leyang Cui,et al.  Evaluating Commonsense in Pre-trained Language Models , 2019, AAAI.

[16]  Ricardo M. Marcacini,et al.  Cross-domain aspect extraction for sentiment analysis: A transductive learning approach , 2018, Decis. Support Syst..

[17]  Angelo Susi,et al.  Mining User Opinions to Support Requirement Engineering: An Empirical Study , 2020, CAiSE.

[18]  Peng Liang,et al.  Can app changelogs improve requirements classification from app reviews?: an exploratory study , 2018, ESEM.

[19]  Yue Lu,et al.  Exploiting social context for review quality prediction , 2010, WWW '10.

[20]  Dietmar Pfahl,et al.  Using app reviews for competitive analysis: tool support , 2019, WAMA@ESEC/SIGSOFT FSE.

[21]  Walid Maalej,et al.  On the automatic classification of app reviews , 2016, Requirements Engineering.

[22]  Fionn Murtagh,et al.  Multilayer perceptrons for classification and regression , 1991, Neurocomputing.

[23]  Soo-Min Kim,et al.  Automatically Assessing Review Helpfulness , 2006, EMNLP.

[24]  Marcos André Gonçalves,et al.  A Feature-Oriented Sentiment Rating for Mobile App Reviews , 2018, WWW.

[25]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[26]  Adailton F. Araujo,et al.  From Bag-of-Words to Pre-trained Neural Language Models: Improving Automatic Classification of App Reviews for Requirements Engineering , 2020 .

[27]  Arvid Kappas,et al.  Sentiment in short strength detection informal text , 2010, J. Assoc. Inf. Sci. Technol..

[28]  Bing Liu,et al.  Opinion Mining and Sentiment Analysis , 2011 .

[29]  Hong Qu,et al.  Bag of meta-words: A novel method to represent document for the sentiment classification , 2018, Expert Syst. Appl..

[30]  Ronen Feldman,et al.  Techniques and applications for sentiment analysis , 2013, CACM.

[31]  Dr. Charu C. Aggarwal Machine Learning for Text , 2018, Springer International Publishing.