The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus

[1]  Eleanor J. Dodson,et al.  Penicillin acylase has a single-amino-acid catalytic centre , 1996, Nature.

[2]  J. Vanderleyden,et al.  A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21 , 1995, Applied and environmental microbiology.

[3]  R. Huber,et al.  Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. , 1995, Science.

[4]  W Baumeister,et al.  Proteasome from Thermoplasma acidophilum: a threonine protease. , 1995, Science.

[5]  W. Baumeister,et al.  Conformational constraints in protein degradation by the 20S proteasome , 1995, Nature Structural Biology.

[6]  J. Durner,et al.  Ubiquitin in the Prokaryote Anabaena variabilis(*) , 1995, The Journal of Biological Chemistry.

[7]  W. Baumeister,et al.  The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease , 1995, FEBS letters.

[8]  G. Schoofs,et al.  Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase , 1995, Journal of bacteriology.

[9]  W. Baumeister,et al.  Proteasome sequences in eubacteria. , 1994, Trends in biochemical sciences.

[10]  C. Slaughter,et al.  PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. , 1994, The Journal of biological chemistry.

[11]  Burkhard Rost,et al.  PHD - an automatic mail server for protein secondary structure prediction , 1994, Comput. Appl. Biosci..

[12]  S A Benner,et al.  Bona fide prediction of aspects of protein conformation. Assigning interior and surface residues from patterns of variation and conservation in homologous protein sequences. , 1994, Journal of molecular biology.

[13]  W. Baumeister,et al.  Structural features of the 26 S proteasome complex. , 1993, Journal of molecular biology.

[14]  R. Huber,et al.  Preliminary X-ray crystallographic study of the proteasome from Thermoplasma acidophilum. , 1993, Journal of molecular biology.

[15]  A. Udvardy,et al.  S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase , 1993, Nature.

[16]  W. Baumeister,et al.  Ubiquitin found in the archaebacterium Thermoplasma acidophilum , 1993, FEBS letters.

[17]  K. Ferrell,et al.  Peptide sequencing identifies MSS1, a modulator of HIV Tat‐mediated transactivation, as subunit 7 of the 26 S protease , 1993, FEBS letters.

[18]  W. Baumeister,et al.  Proteasomes: Multisubunit Proteinases common to Thermoplasma and Eukaryotes , 1993 .

[19]  S. P. Clark,et al.  MALIGNED: a multiple sequence alignment editor , 1992, Comput. Appl. Biosci..

[20]  Desmond G. Higgins,et al.  GCWIND: a microcomputer program for identifying open reading frames according to codon positional G+C content , 1992, Comput. Appl. Biosci..

[21]  W. Baumeister,et al.  Biochemical properties of the proteasome from Thermoplasma acidophilum. , 1992, European journal of biochemistry.

[22]  G D Schuler,et al.  A workbench for multiple alignment construction and analysis , 1991, Proteins.

[23]  A. Murray,et al.  Cyclin is degraded by the ubiquitin pathway , 1991, Nature.

[24]  W. Baumeister,et al.  The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria , 1989, FEBS letters.

[25]  F. Lottspeich,et al.  Internal amino acid sequence analysis of proteins separated by gel electrophoresis after tryptic digestion in polyacrylamide matrix , 1989 .

[26]  W. Baumeister,et al.  Electron microscopy and image analysis of the multicatalytic proteinase , 1988, FEBS letters.

[27]  A. Ikai,et al.  Molecular organization of a high molecular weight multi-protease complex from rat liver. , 1988, Journal of molecular biology.

[28]  F. Lottspeich,et al.  A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. , 1988, European journal of biochemistry.

[29]  A. Hershko,et al.  A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP-dependent complex formation. , 1988, The Journal of biological chemistry.

[30]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[31]  R. Hough,et al.  Purification of two high molecular weight proteases from rabbit reticulocyte lysate. , 1987, The Journal of biological chemistry.

[32]  A. Goldberg,et al.  Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. , 1987, The Journal of biological chemistry.

[33]  H. Reinauer,et al.  Activation of the multicatalytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulphate. , 1985, The Biochemical journal.

[34]  M. Bibb,et al.  The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. , 1984, Gene.

[35]  M. Orłowski,et al.  Evidence that Pituitary Cation‐Sensitive Neutral Endopeptidase Is a Multicatalytic Protease Complex , 1983, Journal of neurochemistry.

[36]  K. Tanaka,et al.  Molecular structure of 20S and 26S proteasomes. , 1993, Enzyme & protein.

[37]  A. Goldberg,et al.  Role of proteasomes in antigen presentation. , 1993, Enzyme & protein.

[38]  W. Baumeister,et al.  Structural features of 26S and 20S proteasomes. , 1993, Enzyme & protein.

[39]  A. Ciechanover,et al.  The ubiquitin system for protein degradation. , 1992, Annual review of biochemistry.

[40]  F. Lottspeich,et al.  Identification of mouse brain proteins after two‐dimensional electrophoresis and electroblotting by microsequence analysis and amino acid composition analysis , 1988, Electrophoresis.