Bacterial Foraging Algorithm을 이용한 Extreme Learning Machine의 파라미터 최적화
暂无分享,去创建一个
최근 단일 은닉층을 갖는 전방향 신경회로망 구조로, 기존의 경사 기반 학습알고리즘들보다 학습 속도가 매우 우수한 ELM(Extreme Learning Machine)이 제안되었다. ELM 알고리즘은 입력 가중치들과 은닉 바이어스들의 초기값을 무작위로 선택하고 출력 가중치들은 Moore-Penrose(MP) 일반화된 역행렬 방법을 통하여 구해진다. 그러나 입력 가중치들과 은닉층 비이어스들의 초기값 선택이 어렵다는 단점을 갖고 있다. 본 논문에서는 최적화 알고리즘 중 박테리아 생존(Bacterial Foraging)알고리즘의 수정된 구조를 이용하여 ELM의 초기 입력 가중치들과 은닉층 바이어스들을 선택하는 개선된 방법을 제안하였다. 실험을 통하여 제안된 알고리즘이 많은 입력 데이터를 가지는 문제들에 대하여 성능이 우수함을 보였다.