Hörimplantate im Zeitalter der Digitalisierung Hearing Implants in the Era of Digitization

Zusammenfassung Die Entwicklungen der letzten Jahre haben gezeigt, dass die Rehabilitation mit Hörimplantaten in der HNO-Heilkunde ein Bereich mit höchstem Entwicklungs- und Innovationspotenzial ist. Neue, bzw. erweiterte Indikationen gingen dabei einher mit Entwicklungen im Bereich der Implantate, neuen OP-Techniken und entsprechend angepassten Rehabilitationsstrategien. Die wachsende Anzahl von Menschen mit Hörstörungen, die erweiterten Indikationen und die daraus resultierende steigende Anzahl CI-Versorgter, sowie die Notwendigkeit der lebenslangen CI Nachsorge sind vor dem Hintergrund begrenzter Ressourcen eine große Herausforderung. Um diese zu bewältigen und zu gestalten, bedarf es neben einer engen interdisziplinären Zusammenarbeit und kontinuierlichen Weiterentwicklung der Therapie auch ganz neuer Strategien. Hier kommt der Digitalisierung all dieser Prozesse eine Schlüsselrolle zu. In diesem Referat werden die aktuellen Entwicklungen aus dem Blickwinkel einer Cochlea-Implantat (CI) versorgenden Klinik dargestellt und besprochen. Das Referat illustriert vielfältige digitale Anwendungen, die in allen Phasen der CI Versorgung zum Einsatz kommen können, angefangen von der Patienteninformation über Möglichkeiten des Hör-Screenings und die präoperative Evaluation bis zur lebenslangen Nachsorge und der klinischen Forschung. Hierbei liegt der Fokus auf speziellen Applikationen, die in der Entwicklung des digitalen Fortschritts und digitaler Strukturen im Rahmen der CI Versorgung eine besondere Rolle spielen und für das Verständnis der weiteren Entwicklung wichtig sind. Möglichkeiten einer vereinfachten Anpassung ergeben sich z. B. durch eine automatische MAP-Erstellung (Artificial Intelligence Anwendungen), Remote Care Netzwerke (Telemedizin, Apps) fördern die aktive Selbstbeteiligung der Patienten und erlauben völlig neue Formen einer ortsungebundenen Patientenversorgung (automatisierte technische Implantatkontrolle, Selbstprogrammierung, Upgrades). Zentrale Datenbanken können die aktuelle MAP z. B. im Reparaturfall speichern, technische Daten und die Hörleistung dokumentieren. Einige der skizzierten Anwendungen sind heute schon Realität, andere erst in der Entwicklung. Das Verständnis über die Möglichkeiten der Digitalisierung und deren Einsatz im Bereich der Hörrehabilitation mit Hörimplantaten und die Erkenntnis über das enorme Potenzial für effektive, zeiteffiziente Strukturen sind unabdingbar, um dieses Potenzial zu nutzen. Für uns HNO-Ärzte als wichtige Akteure im Gesundheitssystem bedeutet das, dass wir neben einer hohen fachlichen Expertise auch hohen Anforderungen an unsere Qualifikation in Bezug auf die digitalen Anwendungen gerecht werden müssen, um diesen Prozess aktiv mitzugestalten.

[1]  H. Olze,et al.  Pediatric Bilateral Cochlear Implantation: Simultaneous Versus Sequential Surgery. , 2019, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[2]  Elisabeth Ingo,et al.  eHealth and the hearing aid adult patient journey: a state-of-the-art review , 2018, Biomedical engineering online.

[3]  A. Laplante-Lévesque,et al.  eHealth and the hearing aid adult patient journey: a state-of-the-art review , 2018, BioMedical Engineering OnLine.

[4]  V. Kuzovkov,et al.  Successful application and timing of a remote network for intraoperative objective measurements during cochlear implantation surgery , 2018, International journal of audiology.

[5]  Michael A Stone,et al.  Application of Data Mining to “Big Data” Acquired in Audiology: Principles and Potential , 2018, Trends in hearing.

[6]  H. Olze,et al.  Hörrehabilitation mithilfe von Cochleaimplantaten und kognitive Fähigkeiten , 2018, HNO.

[7]  M. Weal,et al.  Feasibility of personalised remote long-term follow-up of people with cochlear implants: a randomised controlled trial , 2018, BMJ Open.

[8]  Hannes Kenngott,et al.  Why OR.NET? Requirements and perspectives from a medical user’s, clinical operator’s and device manufacturer’s points of view , 2018, Biomedizinische Technik. Biomedical engineering.

[9]  F. Golatowski,et al.  OR.NET: a service-oriented architecture for safe and dynamic medical device interoperability , 2018, Biomedizinische Technik. Biomedical engineering.

[10]  Thomas Lenarz,et al.  Cochlear implant – state of the art , 2018, GMS current topics in otorhinolaryngology, head and neck surgery.

[11]  I. Varela-Nieto,et al.  Usefulness of Electrical Auditory Brainstem Responses to Assess the Functionality of the Cochlear Nerve Using an Intracochlear Test Electrode. , 2017, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[12]  G. Adam,et al.  RöFo Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren , 2017, RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[13]  G. De Ceulaer,et al.  Computer-assisted CI fitting: Is the learning capacity of the intelligent agent FOX beneficial for speech understanding? , 2017, Cochlear implants international.

[14]  B. Mazurek,et al.  In Patients Undergoing Cochlear Implantation, Psychological Burden Affects Tinnitus and the Overall Outcome of Auditory Rehabilitation , 2017, Front. Hum. Neurosci..

[15]  H. Olze,et al.  Cochlear Implantation of Bilaterally Deafened Patients with Tinnitus Induces Sustained Decrease of Tinnitus-Related Distress , 2017, Front. Neurol..

[16]  J. Lewin,et al.  Bits and bytes: the future of radiology lies in informatics and information technology , 2017, European Radiology.

[17]  H. Cullington,et al.  Person-centred cochlear implant care: Assessing the need for clinic intervention in adults with cochlear implants using a dual approach of an online speech recognition test and a questionnaire , 2017, Cochlear implants international.

[18]  Marco Caversaccio,et al.  Robotic cochlear implantation: surgical procedure and first clinical experience , 2017, Acta oto-laryngologica.

[19]  U. Hoppe,et al.  Langzeitergebnisse eines Screeningverfahrens für erwachsene Cochlea-Implantat-Kandidaten , 2017, Laryngo-Rhino-Otologie.

[20]  European Society of Radiology Summary of the proceedings of the international forum 2016: “Imaging referral guidelines and clinical decision support - how can radiologists implement imaging referral guidelines in clinical routine?” , 2017, Insights into Imaging.

[21]  B. Mazurek,et al.  Tinnitus – Klinik und Therapie , 2017, Laryngo-Rhino-Otologie.

[22]  Tess Bright,et al.  Validated Smartphone-Based Apps for Ear and Hearing Assessments: A Review , 2016, JMIR rehabilitation and assistive technologies.

[23]  M. Bush,et al.  The Role of Telemedicine in Auditory Rehabilitation: A Systematic Review , 2016, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[24]  H. Olze,et al.  Rapid Positive Influence of Cochlear Implantation on the Quality of Life in Adults 70 Years and Older , 2016, Audiology and Neurotology.

[25]  B. Mazurek,et al.  Impact of cochlear implantation on quality of life and mental comorbidity in patients aged 80 years , 2016, The Laryngoscope.

[26]  Klaus Radermacher,et al.  Modular user interface design for integrated surgical workplaces , 2016, Biomedizinische Technik. Biomedical engineering.

[27]  T. Chisolm,et al.  Connected Audiological Rehabilitation: 21st Century Innovations. , 2015, Journal of the American Academy of Audiology.

[28]  D. V. Ferrari,et al.  Teleaudiology: efficacy assessment of an online social network as a support tool for parents of children candidates for cochlear implant. , 2015, CoDAS.

[29]  T. Stöver,et al.  Pre-, Intra- and Post-Operative Imaging of Cochlear Implants , 2015, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[30]  Kate A. Gavaghan,et al.  Facial nerve image enhancement from CBCT using supervised learning technique , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[31]  U. Hoppe,et al.  Audiometry-Based Screening Procedure for Cochlear Implant Candidacy , 2015, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[32]  H. Zenner,et al.  Zur interdisziplinären S3-Leitlinie für die Therapie des chronisch-idiopathischen Tinnitus , 2015, HNO.

[33]  G. Tavartkiladze,et al.  Evaluation of new technology for intraoperative evoked compound action potential threshold measurements , 2015, International journal of audiology.

[34]  H. Olze,et al.  Cochleaimplantate und Tinnitus , 2015, HNO.

[35]  R. Battmer,et al.  Assessment of ‘Fitting to Outcomes Expert’ FOX™ with new cochlear implant users in a multi-centre study , 2015, Cochlear implants international.

[36]  A. Beynon,et al.  A Retrospective Multicenter Study Comparing Speech Perception Outcomes for Bilateral Implantation and Bimodal Rehabilitation , 2015, Ear and hearing.

[37]  Daniel R Nast,et al.  Sound level measurements using smartphone "apps": useful or inaccurate? , 2014, Noise & health.

[38]  G. Eskilsson,et al.  Remote programming of MED-EL cochlear implants: users' and professionals' evaluation of the remote programming experience , 2014, Acta oto-laryngologica.

[39]  Christos Davatzikos,et al.  Association of hearing impairment with brain volume changes in older adults , 2014, NeuroImage.

[40]  De Wet Swanepoel,et al.  Validation of remote mapping of cochlear implants , 2014, Journal of telemedicine and telecare.

[41]  Andrew Botros,et al.  The next generation of Nucleus® fitting: A multiplatform approach towards universal cochlear implant management , 2013, International journal of audiology.

[42]  B. Langguth,et al.  Chronic tinnitus: an interdisciplinary challenge. , 2013, Deutsches Arzteblatt international.

[43]  J. Festen,et al.  The digits-in-noise test: assessing auditory speech recognition abilities in noise. , 2013, The Journal of the Acoustical Society of America.

[44]  D. Sorkin Cochlear implantation in the world's largest medical device market: Utilization and awareness of cochlear implants in the United States , 2013, Cochlear implants international.

[45]  T. Lenarz,et al.  Cochlear Implantation in Different Health-Care Systems: Disparities Between Germany and the United States , 2013, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[46]  Harry Levitt,et al.  Speech comprehension training and auditory and cognitive processing in older adults. , 2012, American journal of audiology.

[47]  B. Mazurek,et al.  Extra Benefit of a Second Cochlear Implant With Respect to Health-Related Quality of Life and Tinnitus , 2012, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[48]  Yue-shuai Song,et al.  Intraoperative CT-guided cochlear implantation in congenital ear deformity , 2012, Acta oto-laryngologica.

[49]  Antje Aschendorff,et al.  Imaging in cochlear implant patients , 2012, GMS current topics in otorhinolaryngology, head and neck surgery.

[50]  Joachim Mueller,et al.  Image guided navigation by intraoperative CT scan for cochlear implantation , 2012, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[51]  S. Waltzman,et al.  An Evidence-Based Algorithm for Intraoperative Monitoring During Cochlear Implantation , 2012, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[52]  J. Allum,et al.  Tinnitus before and 6 Months after Cochlear Implantation , 2012, Audiology and Neurotology.

[53]  B. Mazurek,et al.  Elderly patients benefit from cochlear implantation regarding auditory rehabilitation, quality of life, tinnitus, and stress , 2012, The Laryngoscope.

[54]  F. Lin,et al.  Hearing loss and cognition among older adults in the United States. , 2011, The journals of gerontology. Series A, Biological sciences and medical sciences.

[55]  B. Mazurek,et al.  Cochlear implantation has a positive influence on quality of life, tinnitus, and psychological comorbidity , 2011, The Laryngoscope.

[56]  Agnieszka J. Szczepek,et al.  The Impact of Cochlear Implantation on Tinnitus, Stress and Quality of Life in Postlingually Deafened Patients , 2011, Audiology and Neurotology.

[57]  Susan M Resnick,et al.  Hearing loss and incident dementia. , 2011, Archives of neurology.

[58]  Bart Vaerenberg,et al.  Experiences of the use of FOX, an intelligent agent, for programming cochlear implant sound processors in new users , 2011, International journal of audiology.

[59]  P. Skarżyński,et al.  Remote Fitting of Cochlear Implant System , 2010, Cochlear implants international.

[60]  John A. Albertini,et al.  Deafness and Hearing Loss , 2010 .

[61]  R. Tyler,et al.  Changes in the tinnitus handicap questionnaire after cochlear implantation. , 2009, American journal of audiology.

[62]  R. Filipo,et al.  The importance of intra-operative imaging during cochlear implant surgery. , 2009 .

[63]  H. Wörn,et al.  New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation , 2009, European Archives of Oto-Rhino-Laryngology.

[64]  Bart Carelsen,et al.  Spread of Excitation Measurements for the Detection of Electrode Array Foldovers: A Prospective Study Comparing 3-Dimensional Rotational X-ray and Intraoperative Spread of Excitation Measurements , 2009, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[65]  J. Germiller,et al.  Real-Time Intraoperative Computed Tomography to Assist Cochlear Implant Placement in the Malformed Inner Ear , 2009, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[66]  A. Lalwani,et al.  Remote Intraoperative Monitoring During Cochlear Implant Surgery Is Feasible and Efficient , 2008, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[67]  H. Olze,et al.  The impact of cochlear implantation on quality of life: The role of audiologic performance and variables , 2008, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[68]  N. Quaranta,et al.  The effect of unilateral multichannel cochlear implant on bilaterally perceived tinnitus , 2008, Acta oto-laryngologica.

[69]  Thomas Lenarz,et al.  Clinical Results of AutoNRT,™ a Completely Automatic ECAP Recording System for Cochlear Implants , 2007, Ear and hearing.

[70]  Matthijs Killian,et al.  AutoNRTTM: An automated system that measures ECAP thresholds with the Nucleus® FreedomTM cochlear implant via machine intelligence , 2007, Artif. Intell. Medicine.

[71]  G J Streekstra,et al.  Cochlear implant electrode array insertion monitoring with intra‐operative 3D rotational X‐ray , 2007, Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery.

[72]  Stefan Wermter,et al.  AudioMine: Medical Data Mining in Heterogeneous Audiology Records , 2007, International Conference on Computational Intelligence.

[73]  J. Henry,et al.  General review of tinnitus: prevalence, mechanisms, effects, and management. , 2005, Journal of speech, language, and hearing research : JSLHR.

[74]  J. Cummings,et al.  The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment , 2005, Journal of the American Geriatrics Society.

[75]  N. Quaranta,et al.  Tinnitus and cochlear implantation , 2004, International journal of audiology.

[76]  R. Miyamoto,et al.  Cochlear implantation for tinnitus suppression. , 2003, Otolaryngologic clinics of North America.

[77]  E. J. de la Rosa,et al.  Programmed cell death in the developing inner ear is balanced by nerve growth factor and insulin-like growth factor I , 2003, Journal of Cell Science.

[78]  Guido F. Smoorenburg,et al.  Speech Perception in Nucleus CI24M Cochlear Implant Users with Processor Settings Based on Electrically Evoked Compound Action Potential Thresholds , 2002, Audiology and Neurotology.

[79]  P. van den Broek,et al.  Development and application of a health-related quality-of-life instrument for adults with cochlear implants: The Nijmegen Cochlear Implant Questionnaire , 2000, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[80]  R. Folmer,et al.  Tinnitus severity, loudness, and depression , 1999, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[81]  Eliot L Siegel,et al.  Reinventing Radiology: Big Data and the Future of Medical Imaging , 2018, Journal of thoracic imaging.

[82]  B. Mazurek,et al.  [Tinnitus - Clinical Symptoms and Therapy]. , 2017, Laryngo- rhino- otologie.

[83]  Jean Yeh,et al.  Big Data and the Future of Radiology Informatics. , 2016, Academic radiology.

[84]  D. V. Ferrari,et al.  Teleaudiology : efficacy assessment of an online social network as a support tool for parents of children candidates for cochlear implant , 2015 .

[85]  C. Gerloff,et al.  [On the interdisciplinary S3 guidelines for the treatment of chronic idiopathic tinnitus]. , 2015, HNO.

[86]  Marco Caversaccio,et al.  Surgical planning tool for robotically assisted hearing aid implantation , 2013, International Journal of Computer Assisted Radiology and Surgery.

[87]  D. Baguley,et al.  Cochlear implants and tinnitus. , 2007, Progress in brain research.