Exact solutions of N-Dimensional Schrdinger equation for a potential containing coulomb and quadratic terms

We encounter Coulomb and quadratic terms in the Hamiltonian relation in many branches of physics. Here we consider the N-dimensional space Schrodinger equation in the presence of Coulomb and quadratic terms and analytically calculate the eigenfunctions and the corresponding eigenenergies.   Key words: Schrodinger equation, N-dimension, Coulomb and quadratic potentials. PACS numbers: 02.30Em, 03.65.Fd and 03.65.Ge.

[1]  H. Hassanabadi,et al.  Approximate Pseudospin Solutions of the Dirac Equation with the Eckart Potential Including a Coulomb-Like Tensor Potential , 2011 .

[2]  H. Hassanabadi,et al.  Supersymmetric study of the pseudospin symmetry limit of the Dirac equation for a pseudoharmonic potential , 2011 .

[3]  M. Hamzavi,et al.  a Quasi-Analytical Approach for Energy of Exciton in Quantum Dot , 2010 .

[4]  M. Hamzavi,et al.  EXACT SOLUTIONS OF DIRAC EQUATION WITH HARTMANN POTENTIAL BY NIKIFOROV-UVAROV METHOD , 2010 .

[5]  H. Hassanabadi,et al.  Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb-like tensor potential; the SUSY approach , 2010 .

[6]  R. Sever,et al.  Effective-mass Klein–Gordon equation for non-PT/non-Hermitian generalized Morse potential , 2010, 1010.2359.

[7]  M. Hamzavi,et al.  Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method , 2010 .

[8]  M. Hamzavi,et al.  EXACT SOLUTION OF DIRAC EQUATION FOR MIE-TYPE POTENTIAL BY USING THE NIKIFOROV–UVAROV METHOD UNDER THE PSEUDOSPIN AND SPIN SYMMETRY LIMIT , 2010 .

[9]  H. Hassanabadi,et al.  Dirac equation in the presence of coulomb and linear terms in (1 + 1) dimensions; the supersymmetric approach , 2010 .

[10]  H. Hassanabadi,et al.  Exact Spin and Pseudospin Symmetry Solutions of the Dirac Equation for Mie-Type Potential Including a Coulomb-like Tensor Potential , 2010 .

[11]  M. Hamzavi,et al.  Quadratic and Coulomb Terms for the Spectrum of a Three-Electron Quantum Dot , 2010 .

[12]  M. Hamzavi,et al.  ANALYTICAL STUDY OF EXTERNAL MAGNETIC FIELD EFFECT ON THE ENERGY LEVELS OF A TWO-ELECTRON QUANTUM DOT , 2010 .

[13]  M. Hamzavi,et al.  An alternative method for spectrum of a two-electron-quantum dot , 2009 .

[14]  R. Sever,et al.  Polynomial solutions of the Mie-type potential in the D-dimensional Schrödinger equation , 2008 .

[15]  K. Oyewumi,et al.  Exactly Complete Solutions of the Pseudoharmonic Potential in N-Dimensions , 2008 .

[16]  H. Hassanabadi,et al.  SPECTRUM OF BARYONS AND SPIN–ISOSPIN DEPENDENCE , 2008 .

[17]  B. Nilsson,et al.  Exact solutions of the Schrödinger equation , 2007 .

[18]  H. Hassanabadi,et al.  Relativistic versus nonrelativistic solution of the N-fermion problem in a hyperradius-confining potential , 2007 .

[19]  R. Sever,et al.  Exact Polynomial Solutions of the Mie-Type Potential in the N-Dimensional Schrodinger Equation , 2006, quant-ph/0611065.

[20]  Chen Gang Exact solutions of N-dimensional harmonic oscillator via Laplace transformation , 2005 .

[21]  K. Oyewumi,et al.  Exact solutions of the spherically symmetric multidimensional isotropic harmonic oscillator , 2004 .

[22]  Chien-Ping Lee,et al.  Dependence of energy gap on magnetic field in semiconductor nano-scale quantum rings , 2003 .

[23]  J. Cardoso,et al.  Recurrence relations for radial wavefunctions for the Nth-dimensional oscillators and hydrogenlike atoms , 2003 .

[24]  A. D. Alhaidari Solutions of the nonrelativistic wave equation with position-dependent effective mass , 2002, quant-ph/0207061.

[25]  P. Roy,et al.  A Lie algebraic approach to effective mass Schrödinger equations , 2002 .

[26]  J. Coelho,et al.  Coulomb and quantum oscillator problems in conical spaces with arbitrary dimensions , 2001, gr-qc/0111114.

[27]  W. Miller,et al.  The Coulomb-oscillator relation on n-dimensional spheres and hyperboloids , 2002 .

[28]  G. Paz On the connection between the radial momentum operator and the Hamiltonian in n dimensions , 2000, quant-ph/0009046.

[29]  A. S. Dutra,et al.  Exact solvability of potentials with spatially dependent effective masses , 2000, quant-ph/0306065.

[30]  S. Dong Exact Solutions of the Two-Dimensional Schrödinger Equation with Certain Central Potentials , 2000, quant-ph/0003100.

[31]  T. Lippert,et al.  Static potentials and glueball masses from QCD simulations with Wilson sea quarks , 2000, hep-lat/0003012.

[32]  Gunnar S. Bali,et al.  QCD forces and heavy quark bound states , 2000, hep-ph/0001312.

[33]  Zoran Ikonic,et al.  Generation of isospectral combinations of the potential and the effective-mass variations by supersymmetric quantum mechanics , 1999 .

[34]  S. Dong,et al.  Exact Solutions of the Schrödinger Equation with Inverse-Power Potential , 1999 .

[35]  L. Serra,et al.  Spin response of unpolarized quantum dots , 1997 .

[36]  L. Tiator,et al.  A three-body force model for the baryon spectrum , 1995 .

[37]  Moriarty,et al.  Spin splittings of heavy-quark bound states from lattice QCD. , 1987, Physical review. D, Particles and fields.

[38]  D. Fries,et al.  Quarks and Nuclear Forces , 1982 .