Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems

Given a graph with n vertices, k terminals and bounded integer weights on the edges, we compute the minimum Steiner Tree in ${\mathcal{O}^*}(2^k)$ time and polynomial space, where the ${\mathcal{O}^*}$ notation omits poly (n ,k ) factors. Among our results are also polynomial-space $\mathcal{O}^*(2^n)$ algorithms for several ${\mathcal{NP}}$-complete spanning tree and partition problems. The previous fastest known algorithms for these problems use the technique of dynamic programming among subsets, and require exponential space. We introduce the concept of branching walks and extend the Inclusion-Exclusion algorithm of Karp for counting Hamiltonian paths. Moreover, we show that our algorithms can also be obtained by applying Mobius inversion on the recurrences used for the dynamic programming algorithms.

[1]  Andreas Björklund,et al.  Exact Algorithms for Exact Satisfiability and Number of Perfect Matchings , 2007, Algorithmica.

[2]  Richard M. Karp,et al.  Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..

[3]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[4]  Gerhard J. Woeginger,et al.  Space and Time Complexity of Exact Algorithms: Some Open Problems (Invited Talk) , 2004, IWPEC.

[5]  Michael A. Langston,et al.  Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings , 2006, IWPEC.

[6]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer Exact Algorithms for Counting Dominating Sets , 2009 .

[7]  Kurt Mehlhorn,et al.  Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings , 2008, ESA.

[8]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Jesper Nederlof,et al.  Inclusion exclusion for hard problems , 2008 .

[10]  Andreas Björklund,et al.  Inclusion--Exclusion Algorithms for Counting Set Partitions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[11]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[12]  Fabrizio Grandoni,et al.  Faster Steiner Tree Computation in Polynomial-Space , 2008, ESA.

[13]  Henning Fernau,et al.  Exact Exponential Time Algorithms for Max Internal Spanning Tree , 2008, ArXiv.

[14]  Eric Bax,et al.  Recurrence-Based Reductions for Inclusion and Exclusion Algorithms Applied to P Problems , 1996 .

[15]  Saket Saurabh,et al.  A Moderately Exponential Time Algorithm for Full Degree Spanning Tree , 2008, TAMC.

[16]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[17]  Xinhui Wang,et al.  Dynamic Programming for Minimum Steiner Trees , 2007, Theory of Computing Systems.

[18]  Andreas Björklund,et al.  Trimmed Moebius Inversion and Graphs of Bounded Degree , 2008, Theory of Computing Systems.

[19]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2009, ESA.

[20]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[21]  Andreas Björklund,et al.  Computing the Tutte Polynomial in Vertex-Exponential Time , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Fan Chung Graham,et al.  On the Cover Polynomial of a Digraph , 1995, J. Comb. Theory, Ser. B.

[23]  Mikko Koivisto,et al.  An O*(2^n ) Algorithm for Graph Coloring and Other Partitioning Problems via Inclusion--Exclusion , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[24]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[25]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[26]  H. Bodlaender,et al.  An exact algorithm for graph coloring with polynomial memory , 2006 .

[27]  Allan Gottlieb,et al.  A generating function approach to the Traveling Salesman Problem , 1977, ACM Annual Conference.