An elementary proof of Strauss conjecture

[1]  F. John Blow-up of solutions of nonlinear wave equations in three space dimensions , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Glassey,et al.  Finite-time blow-up for solutions of nonlinear wave equations , 1981 .

[3]  R. Glassey,et al.  Existence in the large for ▭u=F(u) in two space dimensions , 1981 .

[4]  Thomas C. Sideris,et al.  Nonexistence of global solutions to semilinear wave equations in high dimensions , 1984 .

[5]  Jack Schaeffer The equation utt − Δu = |u|p for the critical value of p , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  Hans Lindblad Blow-up for solutions of □u=|u|P with small initial data , 1990 .

[7]  Hans Lindblad,et al.  Long-time existence for small amplitude semilinear wave equations , 1996 .

[8]  Weighted Strichartz estimates and global existence for semilinear wave equations , 1997, math/9912206.

[9]  J. Shatah,et al.  Geometric wave equations , 1998 .

[10]  D. Tataru Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation , 2000 .

[11]  V. Georgiev,et al.  Life‐span of subcritical semilinear wave equation , 2001 .

[12]  Qi S. Zhang,et al.  Finite time blow up for critical wave equations in high dimensions , 2004, math/0404055.

[13]  Yi Zhou,et al.  Concerning the Strauss Conjecture and Almost Global Existence for Nonlinear Dirichlet-Wave Equations in 4-Dimensions , 2007, 0710.2026.

[14]  Yi Zhou Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions* , 2007 .

[15]  Hart F. Smith,et al.  On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles , 2008, 0805.1673.

[16]  Hart F. Smith,et al.  Strichartz estimates for Dirichlet-wave equations in two dimensions with applications , 2010, 1012.3183.

[17]  M. Tohaneanu,et al.  The Strauss conjecture on Kerr black hole backgrounds , 2013, Mathematische Annalen.