An elementary proof of Strauss conjecture
暂无分享,去创建一个
[1] F. John. Blow-up of solutions of nonlinear wave equations in three space dimensions , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[2] R. Glassey,et al. Finite-time blow-up for solutions of nonlinear wave equations , 1981 .
[3] R. Glassey,et al. Existence in the large for ▭u=F(u) in two space dimensions , 1981 .
[4] Thomas C. Sideris,et al. Nonexistence of global solutions to semilinear wave equations in high dimensions , 1984 .
[5] Jack Schaeffer. The equation utt − Δu = |u|p for the critical value of p , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[6] Hans Lindblad. Blow-up for solutions of □u=|u|P with small initial data , 1990 .
[7] Hans Lindblad,et al. Long-time existence for small amplitude semilinear wave equations , 1996 .
[8] Weighted Strichartz estimates and global existence for semilinear wave equations , 1997, math/9912206.
[9] J. Shatah,et al. Geometric wave equations , 1998 .
[10] D. Tataru. Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation , 2000 .
[11] V. Georgiev,et al. Life‐span of subcritical semilinear wave equation , 2001 .
[12] Qi S. Zhang,et al. Finite time blow up for critical wave equations in high dimensions , 2004, math/0404055.
[13] Yi Zhou,et al. Concerning the Strauss Conjecture and Almost Global Existence for Nonlinear Dirichlet-Wave Equations in 4-Dimensions , 2007, 0710.2026.
[14] Yi Zhou. Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions* , 2007 .
[15] Hart F. Smith,et al. On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles , 2008, 0805.1673.
[16] Hart F. Smith,et al. Strichartz estimates for Dirichlet-wave equations in two dimensions with applications , 2010, 1012.3183.
[17] M. Tohaneanu,et al. The Strauss conjecture on Kerr black hole backgrounds , 2013, Mathematische Annalen.