Testing the paradigm of an ideal glass transition: Dynamics of an ultrastable polymeric glass

Measurements on nanogram samples of ultrastable polymer Teflon films challenge paradigms of the glass transition event. A major challenge to understanding glass-forming materials is obtaining equilibrium data far below the laboratory glass transition temperature Tg. The challenge arises because it takes geologic aging times to achieve the equilibrium glassy state when temperatures are well below Tg. Here, we finesse this problem through measurements on an ultrastable amorphous Teflon with fictive temperature Tf near to its Kauzmann temperature TK. In the window between Tf and Tg, the material has a lower molecular mobility than the equilibrium state because of its low specific volume and enthalpy. Our measurements show that the determined scaled relaxation times deviate strongly from the classical expectation of divergence of time scales at a finite temperature. The results challenge the view of an ideal glass transition at or near to TK.

[1]  G. McKenna,et al.  “Rubbery Stiffening” and Rupture Behavior of Freely Standing Nanometric Thin PIB Films , 2017 .

[2]  M. Ediger Perspective: Highly stable vapor-deposited glasses. , 2017, The Journal of chemical physics.

[3]  G. McKenna,et al.  50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers , 2017 .

[4]  G. McKenna,et al.  An Ultrastable Polymeric Glass: Amorphous Fluoropolymer with Extreme Fictive Temperature Reduction by Vacuum Pyrolysis , 2017 .

[5]  Eva A. A. Pogna,et al.  Probing equilibrium glass flow up to exapoise viscosities , 2015, Proceedings of the National Academy of Sciences.

[6]  K. Schweizer,et al.  Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids. , 2014, The Journal of chemical physics.

[7]  C. Roth,et al.  Stability of polymer glasses vitrified under stress. , 2014, Soft matter.

[8]  Jing Zhao,et al.  Something about amber: Fictive temperature and glass transition temperature of extremely old glasses from copal to Triassic amber , 2013 .

[9]  R. Richert Comment on "Temperature divergence of the dynamics of a poly(vinyl acetate) glass: dielectric vs. mechanical behaviors" [J. Chem. Phys. 136, 154901 (2012)]. , 2013, The Journal of chemical physics.

[10]  Á. Alegría,et al.  Direct evidence of two equilibration mechanisms in glassy polymers. , 2013, Physical review letters.

[11]  Jing Zhao,et al.  Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems , 2013, Nature Communications.

[12]  Jing Zhao,et al.  Temperature divergence of the dynamics of a poly(vinyl acetate) glass: dielectric vs. mechanical behaviors. , 2012, The Journal of chemical physics.

[13]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[14]  J. P. Garrahan,et al.  Corresponding states of structural glass formers. II. , 2009, The journal of physical chemistry. B.

[15]  D. M. Hoffman,et al.  RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS , 2009 .

[16]  J. P. Garrahan,et al.  Corresponding states of structural glass formers. , 2008, The journal of physical chemistry. B.

[17]  J. Dyre,et al.  Little evidence for dynamic divergences in ultraviscous molecular liquids , 2008 .

[18]  G. McKenna Glass dynamics: Diverging views on glass transition , 2008 .

[19]  J. Dudowicz,et al.  Generalized Entropy Theory of Polymer Glass Formation , 2008 .

[20]  Robert J. McMahon,et al.  Organic Glasses with Exceptional Thermodynamic and Kinetic Stability , 2007, Science.

[21]  G. McKenna,et al.  Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films. , 2007, The Review of scientific instruments.

[22]  P. Wolynes,et al.  Theory of structural glasses and supercooled liquids. , 2006, Annual review of physical chemistry.

[23]  M. Alcoutlabi,et al.  Effects of confinement on material behaviour at the nanometre size scale , 2005 .

[24]  F. Stillinger,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[25]  Sindee L. Simon,et al.  Volume and enthalpy recovery of polystyrene , 2001 .

[26]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[27]  Gregory B. McKenna,et al.  Arrhenius-type temperature dependence of the segmental relaxation below Tg , 1999 .

[28]  A. Yang,et al.  Configurational Entropy Approach to the Kinetics of Glasses , 1997, Journal of research of the National Institute of Standards and Technology.

[29]  R. Richert,et al.  DYNAMICS OF GLASS-FORMING LIQUIDS. I: TEMPERATURE-DERIVATIVE ANALYSIS OF DIELECTRIC RELAXATION DATA , 1995 .

[30]  F. Stillinger,et al.  A Topographic View of Supercooled Liquids and Glass Formation , 1995, Science.

[31]  P. Anderson,et al.  Through the Glass Lightly , 1995, Science.

[32]  Martin Goldstein,et al.  Viscous Liquids and the Glass Transition: A Potential Energy Barrier Picture , 1969 .

[33]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[34]  A. J. Kovacs,et al.  Transition vitreuse dans les polymères amorphes. Etude phénoménologique , 1964 .

[35]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[36]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[37]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. I. The Dependence of the Viscosity of Liquids on Temperature , 1951 .

[38]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[39]  A. Q. Tool EFFECT OF HEAT‐TREATMENT ON THE DENSITY AND CONSTITUTION OF HIGH‐SILICA GLASSES OF THE BOROSILICATE TYPE* , 1948 .

[40]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[41]  Jing Zhao,et al.  Accumulating evidence for non-diverging time-scales in glass-forming fluids , 2015 .

[42]  B. F. Rasmussen,et al.  A Topographic View of Supercooled Liquids and Glass Formation , 2005 .

[43]  J. C. Tucker,et al.  Dependence of the Fictive Temperature of Glass on Cooling Rate , 1976 .

[44]  A. Kovacs Transition vitreuse dans les polymeres amorphes , 1964 .

[45]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .