Freezing transitions in a system of two-dimensional octupolar multipoles

[1]  P. Mishra,et al.  Integral Equation theory of a system of nematic quadrupoles , 2016 .

[2]  H. Löwen,et al.  Density functional theory of freezing for binary mixtures of 2D superparamagnetic colloids , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Sanat K. Kumar,et al.  Structures and partial clustering in binary mixtures of colloidal particles interacting via repulsive power law potentials , 2014 .

[4]  O. Tovkach,et al.  Elastic octopoles and colloidal structures in nematic liquid crystals. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. Chernyshuk High-order elastic terms, boojums and general paradigm of the elastic interaction between colloidal particles in the nematic liquid crystals , 2012, The European physical journal. E, Soft matter.

[6]  S. Žumer,et al.  Assembly and control of 3D nematic dipolar colloidal crystals , 2013, Nature Communications.

[7]  O. Tovkach,et al.  Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  O. Tovkach,et al.  Theory of elastic interaction between colloidal particles in a nematic cell in the presence of an external electric or magnetic field. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  G. Karlström,et al.  Dipolar Order in Molecular Fluids: II. Molecular Influence , 2011 .

[10]  Pergamenshchik Vm,et al.  Dipolar colloids in nematostatics: tensorial structure, symmetry, different types, and their interaction. , 2011 .

[11]  S. Chernyshuk,et al.  Theory of elastic interaction of colloidal particles in nematic liquid crystals near one wall and in the nematic cell. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  S. Chernyshuk,et al.  Elastic interaction between colloidal particles in confined nematic liquid crystals. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Y. Singh,et al.  Crystallization of fluids: Free-energy functional for symmetry breaking first-order freezing transition , 2009 .

[14]  Y. Singh,et al.  Crystallization of Simple Fluids: Relative Stability of f.c.c. and b.c.c Structures , 2009, 0902.4801.

[15]  Myung Chul Choi,et al.  Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. , 2007, Nature materials.

[16]  Y. Singh,et al.  Pair correlation functions and a free energy functional for the nematic phase. , 2007, The Journal of chemical physics.

[17]  O. Lavrentovich,et al.  Coexistence of two colloidal crystals at the nematic-liquid-crystal-air interface. , 2007, Physical review letters.

[18]  Miha Ravnik,et al.  Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects , 2006, Science.

[19]  Y. Singh,et al.  Pair correlation functions in nematics: Free-energy functional and isotropic-nematic transition. , 2006, Physical review letters.

[20]  Jurij Kotar,et al.  Interparticle potential and drag coefficient in nematic colloids. , 2006, Physical review letters.

[21]  O. Lavrentovich,et al.  Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. , 2005, Physical review letters.

[22]  Paras N. Prasad,et al.  Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal , 2005 .

[23]  O. Lavrentovich,et al.  Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions. , 2004, Physical review letters.

[24]  Hiroshi Yokoyama,et al.  Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers. , 2004, Physical review letters.

[25]  H. Yokoyama,et al.  Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Holger Stark,et al.  Physics of colloidal dispersions in nematic liquid crystals , 2001 .

[27]  A. Nych,et al.  Crystal structure in nematic emulsion. , 2001, Physical review letters.

[28]  G. Maret,et al.  Dynamic criteria for melting in two dimensions , 2000, Physical review letters.

[29]  Philippe Barois,et al.  Colloidal ordering from phase separation in a liquid- crystalline continuous phase , 2000, Nature.

[30]  Ralf Lenke,et al.  Two-stage melting of paramagnetic colloidal crystals in two dimensions , 1999 .

[31]  P. Tomchuk,et al.  INTERACTION OF FOREIGN MACRODROPLETS IN A NEMATIC LIQUID CRYSTAL AND INDUCED SUPERMOLECULAR STRUCTURES , 1999 .

[32]  A. Gast,et al.  Simple Ordering in Complex Fluids , 1998 .

[33]  T. Lubensky,et al.  TOPOLOGICAL DEFECTS AND INTERACTIONS IN NEMATIC EMULSIONS , 1997, cond-mat/9707133.

[34]  Holger Stark,et al.  Novel Colloidal Interactions in Anisotropic Fluids , 1997, Science.

[35]  S. Ramaswamy,et al.  Power-Law Forces Between Particles in a Nematic , 1996 .

[36]  Y. Singh Density-functional theory of freezing and properties of the ordered phase , 1991 .

[37]  N. Ashcroft,et al.  Modified weighted-density-functional theory of nonuniform classical liquids. , 1989, Physical review. A, General physics.

[38]  Y. Lozovik,et al.  On a modified Lindemann-like criterion for 2D melting , 1985 .

[39]  D. Young,et al.  New, thermodynamically consistent, integral equation for simple fluids , 1984 .

[40]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[41]  D. Lévesque,et al.  Theoretical determination of the dielectric constant of a two dimensional dipolar fluid , 1981 .

[42]  M. Yussouff,et al.  First-principles order-parameter theory of freezing , 1979 .

[43]  J. D. Talman,et al.  Numerical Fourier and Bessel transforms in logarithmic variables , 1978 .

[44]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[45]  Keith W. Johnson,et al.  Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials , 1971 .