Topologically protected excitons in porphyrin thin films.

The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

[1]  H. Dosch,et al.  2D supramolecular self-assembly of binary organic monolayers. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[3]  Carl C. Wamser,et al.  Porphyrins and phthalocyanines in solar photovoltaic cells , 2010 .

[4]  R. Acres,et al.  Adsorption geometry and electronic structure of iron phthalocyanine on Ag surfaces: A LEED and photoelectron momentum mapping study , 2013, 1309.3476.

[5]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[6]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[7]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[8]  R. Wiesendanger,et al.  Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates , 2009, Nanotechnology.

[9]  P. Zoller,et al.  Topological flat bands from dipolar spin systems. , 2012, Physical review letters.

[10]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[11]  Jasper Knoester,et al.  Optical properties of disordered molecular aggregates: a numerical study , 1991 .

[12]  R. Wiesendanger,et al.  Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces , 2008 .

[13]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[14]  S. Mukamel,et al.  Zeeman shift of two-dimensional optical signals of Mg-porphyrin dimers with circularly polarized beams. , 2012, The Journal of chemical physics.

[15]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[16]  James D. Whitfield,et al.  Quantum Transport Enhancement by Time-Reversal Symmetry Breaking , 2012, Scientific Reports.

[17]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[18]  Tomás Torres,et al.  Lighting Porphyrins and Phthalocyanines for Molecular Photovoltaics , 2010 .

[19]  Dongho Kim Multiporphyrin arrays: Fundamentals and applications , 2012 .

[20]  Katsuhiko Nishiyama,et al.  Dependence on the crystallographic orientation of Au for the potential window of the electrical double-layer region in imidazolium-based ionic liquids , 2012 .

[21]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[22]  Hsin Lin,et al.  Topological crystalline insulators in the SnTe material class , 2012, Nature Communications.

[23]  F. Krebs,et al.  Organic photovoltaics , 2013, Nanotechnology.

[24]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction , 2000 .

[25]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[26]  Editors , 1986, Brain Research Bulletin.

[27]  Feng Liu,et al.  Organic topological insulators in organometallic lattices. , 2013, Nature communications.

[28]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[29]  C. Medaglia,et al.  A Numerical Study , 2005 .

[30]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[31]  Desheng Kong,et al.  Opportunities in chemistry and materials science for topological insulators and their nanostructures. , 2011, Nature chemistry.

[32]  S. Lloyd,et al.  Chiral quantum walks , 2014, 1405.6209.

[33]  F. Diederich,et al.  Nanoscale engineering of molecular porphyrin wires on insulating surfaces. , 2008, Small.

[34]  R. Silbey,et al.  Optimization of exciton trapping in energy transfer processes. , 2009, The journal of physical chemistry. A.

[35]  J. Knoester Modeling the optical properties of excitons in linear and tubular J-aggregates , 2006 .

[36]  J. Davenport Editor , 1960 .

[37]  Vladimir Bulović,et al.  Visualization of exciton transport in ordered and disordered molecular solids , 2014, Nature Communications.

[38]  Mohammad Hafezi,et al.  Robust optical delay lines with topological protection , 2011, 1102.3256.

[39]  Alexander Szameit,et al.  Photonic Topological Insulators , 2014, CLEO 2014.

[40]  D. Yoshioka The quantum hall effect , 2002 .

[41]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[42]  G. Canters,et al.  12 – High-Resolution Zeeman Spectroscopy of Metalloporphyrins , 1978 .

[43]  Christoph J. Brabec,et al.  Organic photovoltaics : concepts and realization , 2003 .

[44]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[45]  S. Fukuzumi,et al.  Porphyrin‐ and Fullerene‐Based Molecular Photovoltaic Devices , 2004 .

[46]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[47]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[48]  Aimei Gao,et al.  Two-dimensional self-assembly of a porphyrin-polypyridyl ruthenium(II) hybrid on hopg surface through metal-ligand interactions. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[49]  Semion K. Saikin,et al.  Photonics meets excitonics: natural and artificial molecular aggregates , 2013, 1304.0124.

[50]  R. Knox,et al.  Theory of Molecular Excitons , 1964 .

[51]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[52]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[53]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[54]  Feng Liu,et al.  Flat Chern band in a two-dimensional organometallic framework. , 2012, Physical review letters.

[55]  Feng Liu,et al.  Prediction of a two-dimensional organic topological insulator. , 2013, Nano letters.

[56]  K. Itaya,et al.  Two-dimensional self-organization of phthalocyanine and porphyrin: dependence on the crystallographic orientation of Au. , 2003, Journal of the American Chemical Society.

[57]  N. Yao,et al.  Realizing fractional Chern insulators in dipolar spin systems. , 2012, Physical review letters.

[58]  J. Kortus,et al.  Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[59]  Feng Liu,et al.  Quantum anomalous Hall effect in 2D organic topological insulators. , 2013, Physical review letters.

[60]  G. Feher,et al.  The Zeeman effect in porphyrins , 1968 .

[61]  E. Vauthey,et al.  Excited-state dynamics of porphyrin-naphthalenediimide-porphyrin triads. , 2013, Physical chemistry chemical physics : PCCP.