Optimal Gaits for Dynamic Robotic Locomotion

This paper addresses the optimal control and selection of gaits in a class of dynamic locomotion systems that exhibit group symmetries. The authors study near-optimal gaits for an underwater eel-like robot, although the tools and analysis can be applied more broadly to a large family of nonlinear control systems with drift. The approximate solutions to the optimal control problem are found using a truncated basis of cyclic input functions. This generates feasible paths that approach the optimal one as the number of basis functions is increased. The authors describe an algorithm to obtain numerical solutions to this problem and present simulation results that demonstrate the types of solutions that can be achieved. Comparisons are made with experimental data using the REEL II robot platform.

[1]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[2]  S. Shankar Sastry,et al.  The Structure of Optimal Controls for a Steering Problem , 1992 .

[3]  H. Sussmann A general theorem on local controllability , 1987 .

[4]  Angus E. Taylor Introduction to functional analysis , 1959 .

[5]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[6]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[7]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[8]  J. Baillieul Geometric methods for nonlinear optimal control problems , 1978 .

[9]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[10]  H. Zhang,et al.  Simple Mechanical Control Systems with Constraints and Symmetry , 2002, SIAM J. Control. Optim..

[11]  J. Partington,et al.  Introduction to Functional Analysis , 1981, The Mathematical Gazette.

[12]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[13]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[14]  J. Burdick,et al.  Controllability Tests for Mechanical Systems withSymmetries and ConstraintsJim , 1997 .

[15]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[16]  Jaydev P. Desai,et al.  Continuous Motion Plans for Robotic Systems with Changing Dynamic Behavior , 1996 .

[17]  James P. Ostrowski Computing reduced equations for robotic systems with constraints and symmetries , 1999, IEEE Trans. Robotics Autom..

[18]  L. Dai,et al.  Non-holonomic Kinematics and the Role of Elliptic Functions in Constructive Controllability , 1993 .

[19]  R. H. Thurston,et al.  Scientific Books: Transactions of the American Society of Mechanical Engineers , 1900 .

[20]  R. Murray,et al.  The geometry and control of dissipative systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  Naomi Ehrich Leonard,et al.  Motion control of drift-free, left-invariant systems on Lie groups , 1995, IEEE Trans. Autom. Control..

[22]  Peter Hilton,et al.  New Directions in Applied Mathematics , 1982 .

[23]  C. Fernandes,et al.  Near-optimal nonholonomic motion planning for a system of coupled rigid bodies , 1994, IEEE Trans. Autom. Control..

[24]  R. M. Alexander,et al.  Optimization and gaits in the locomotion of vertebrates. , 1989, Physiological reviews.

[25]  R. Montgomery Isoholonomic problems and some applications , 1990 .

[26]  Joel W. Burdick,et al.  The Geometric Mechanics of Undulatory Robotic Locomotion , 1998, Int. J. Robotics Res..

[27]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[28]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[29]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[30]  Yoshihiko Nakamura,et al.  Exploiting nonholonomic redundancy of free-flying space robots , 1993, IEEE Trans. Robotics Autom..

[31]  J. Sussmann,et al.  SHORTEST PATHS FOR THE REEDS-SHEPP CAR: A WORKED OUT EXAMPLE OF THE USE OF GEOMETRIC TECHNIQUES IN NONLINEAR OPTIMAL CONTROL. 1 , 1991 .

[32]  P. P. Gambari︠a︡n How mammals run : anatomical adaptations , 1974 .

[33]  P. Krishnaprasad Geometric Phases, and Optimal Reconfiguration for Multibody Systems , 1990, 1990 American Control Conference.

[34]  S. Sastry,et al.  Optimal path planning on matrix Lie groups , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[35]  C. R. Fourtner,et al.  Locomotion and Energetics in Arthropods , 1981, Springer US.

[36]  James P. Ostrowski,et al.  Control Algorithms Using Affine Connections on Principal Fiber Bundles , 2000 .

[37]  Joel W. Burdick,et al.  Nonholonomic mechanics and locomotion: the snakeboard example , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[38]  James P. Ostrowski,et al.  A geometric approach to anguilliform locomotion: modelling of an underwater eel robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[39]  Angus E. Taylor,et al.  Introduction to functional analysis, 2nd ed. , 1986 .

[40]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[41]  Devin J. Balkcom,et al.  Graphical construction of time optimal trajectories for di?erential drive robots , 2001 .

[42]  James Ostrowski Optimal control for principal kinematic systems on lie groups , 1999 .

[43]  F. Delcomyn Insect Locomotion on Land , 1981 .

[44]  Vijay Kumar,et al.  A Framework for Vision Based Formation Control , 2002 .

[45]  Zexiang Li,et al.  Optimal Nonholonomic Motion Planning for a Falling Cat , 1993 .

[46]  俊治 杉江 IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control , 2000 .

[47]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[48]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[49]  R. Montgomery,et al.  Problems and progress in microswimming , 1996 .

[50]  James P. Ostrowski,et al.  Open-Loop Verification of Motion Planning for an Underwater Eel-Like Robot , 2000, ISER.

[51]  J. Ostrowski The mechanics and control of undulatory robotic locomotion , 1995 .

[52]  Jerrold E. Marsden,et al.  Stabilization of rigid body dynamics by internal and external torques , 1992, Autom..

[53]  Naomi Ehrich Leonard,et al.  Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..

[54]  Naomi Ehrich Leonard Periodic forcing, dynamics and control of underactuated spacecraft and underwater vehicles , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[55]  Vijay Kumar,et al.  Optimal Gait Selection for Nonholonomic Locomotion Systems , 1997, Proceedings of International Conference on Robotics and Automation.

[56]  Kenneth Alexander McIsaac A hierarchical approach to motion planning with applications to an underwater eel -like robot , 2001 .

[57]  J. Cortés,et al.  Optimal control for nonholonomic systems with symmetry , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[58]  Fumihito Arai,et al.  Steering mechanism of underwater micro mobile robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[59]  P. Krishnaprasad,et al.  Control problems on principal bundles and nonholonomic mechanics , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.