Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing

[1]  Lacramioara Bintu,et al.  Nanobody-mediated control of gene expression and epigenetic memory , 2020, Nature Communications.

[2]  David R. Liu,et al.  Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors , 2020, Nature Biotechnology.

[3]  J. Doench,et al.  Design and analysis of CRISPR–Cas experiments , 2020, Nature Biotechnology.

[4]  Thomas M. Norman,et al.  Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing , 2020, Nature Biotechnology.

[5]  A. Jeltsch,et al.  Engineering of Effector Domains for Targeted DNA Methylation with Reduced Off-Target Effects , 2020, International journal of molecular sciences.

[6]  Thomas M. Norman,et al.  Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs , 2019, Nature Biotechnology.

[7]  Charles D. Yeh,et al.  Advances in genome editing through control of DNA repair pathways , 2019, Nature Cell Biology.

[8]  William A. Flavahan,et al.  Epigenome editing strategies for the functional annotation of CTCF insulators , 2019, Nature Communications.

[9]  P. Farnham,et al.  Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner , 2019, Epigenetics & Chromatin.

[10]  Michael S. Fernandopulle,et al.  CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons , 2019, Neuron.

[11]  Xiaoshu Xu,et al.  A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology. , 2019, Journal of molecular biology.

[12]  Albert J. Keung,et al.  Engineering Epigenetic Regulation Using Synthetic Read-Write Modules , 2019, Cell.

[13]  P. Talbot,et al.  Highly efficient genome editing via CRISPR–Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression , 2018, Nucleic acids research.

[14]  C. Gersbach,et al.  Editing the Epigenome: Reshaping the Genomic Landscape. , 2018, Annual review of genomics and human genetics.

[15]  Jennifer A. Doudna,et al.  CRISPR-Cas guides the future of genetic engineering , 2018, Science.

[16]  S. Gygi,et al.  Automethylation-induced conformational switch in Clr4/Suv39h maintains epigenetic stability , 2018, Nature.

[17]  Gregory McAllister,et al.  p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells , 2018, Nature Medicine.

[18]  D. Moazed,et al.  Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation , 2018, Nature.

[19]  Howard Y. Chang,et al.  Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element , 2018, Cell.

[20]  Maximilian Müller,et al.  Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells , 2018, Nucleic acids research.

[21]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[22]  Michael J. Ziller,et al.  Genome-wide tracking of dCas9-methyltransferase footprints , 2018, Nature Communications.

[23]  G. Wang,et al.  Structural basis for DNMT3A-mediated de novo DNA methylation , 2017, Nature.

[24]  John G Doench,et al.  Am I ready for CRISPR? A user's guide to genetic screens , 2017, Nature Reviews Genetics.

[25]  Jonathan Y. Hsu,et al.  Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors , 2017, Nature Methods.

[26]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[27]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[28]  R. Reinhardt,et al.  Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase , 2016, Nucleic acids research.

[29]  Charles A. Williams,et al.  Angelman syndrome — insights into a rare neurogenetic disorder , 2016, Nature Reviews Neurology.

[30]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[31]  Max A. Horlbeck,et al.  Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation , 2016, eLife.

[32]  Yonatan Stelzer,et al.  Editing DNA Methylation in the Mammalian Genome , 2016, Cell.

[33]  Bo Huang,et al.  A scalable strategy for high-throughput GFP tagging of endogenous human proteins , 2016, Proceedings of the National Academy of Sciences.

[34]  Hao Wu,et al.  Differential methylation analysis for BS-seq data under general experimental design , 2016, Bioinform..

[35]  Lei Zhang,et al.  A CRISPR-based approach for targeted DNA demethylation , 2016, Cell Discovery.

[36]  Davide Cittaro,et al.  Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing , 2016, Cell.

[37]  W. Lim,et al.  Nucleosome breathing and remodeling constrain CRISPR-Cas9 function , 2016, eLife.

[38]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[39]  Max A. Horlbeck,et al.  Nucleosomes impede Cas9 access to DNA in vivo and in vitro , 2016, eLife.

[40]  Yaron E. Antebi,et al.  Dynamics of epigenetic regulation at the single-cell level , 2016, Science.

[41]  G. Superti-Furga,et al.  Gene essentiality and synthetic lethality in haploid human cells , 2015, Science.

[42]  R. Jaenisch,et al.  Tracing Dynamic Changes of DNA Methylation at Single-Cell Resolution , 2015, Cell.

[43]  Neville E. Sanjana,et al.  High-throughput functional genomics using CRISPR–Cas9 , 2015, Nature Reviews Genetics.

[44]  D. Moazed,et al.  Epigenetic inheritance uncoupled from sequence-specific recruitment , 2015, Science.

[45]  Pin Tong,et al.  Restricted epigenetic inheritance of H3K9 methylation , 2015, Science.

[46]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[47]  Ron Weiss,et al.  Highly-efficient Cas9-mediated transcriptional programming , 2014, Nature Methods.

[48]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[49]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[50]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[51]  David T. W. Jones,et al.  Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing , 2014, Nature.

[52]  Jeffry D Sander,et al.  Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins , 2013, Nature Biotechnology.

[53]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[54]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[55]  B. Langmead,et al.  BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions , 2012, Genome Biology.

[56]  G. Crabtree,et al.  Dynamics and Memory of Heterochromatin in Living Cells , 2012, Cell.

[57]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[58]  A. Bird,et al.  CpG islands and the regulation of transcription. , 2011, Genes & development.

[59]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[60]  Richard A Young,et al.  Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. , 2010, Cell stem cell.

[61]  Willem P C Stemmer,et al.  A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner , 2009, Nature Biotechnology.

[62]  S. Zukin,et al.  Epigenetics , 2009, Alzheimer's & Dementia.

[63]  A. Bird,et al.  Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl‐CpG binding protein. , 1992, The EMBO journal.

[64]  Fei Liu,et al.  Tau and neurodegenerative disease: the story so far , 2016, Nature Reviews Neurology.

[65]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.