Optimization of a Subarray Structure to Improve the $G/T$ of an Active Array Antenna

In this letter, a subarray optimization to improve <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> of an active array antenna is presented. To optimize <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula>, an equation for <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> is derived by calculating the formulas of the gain and noise temperature in the active array antenna. By using <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> and the peak sidelobe level of a scanned beam, the cost function is defined. Applying this cost function to the subarray optimization, a <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> value of 5.68 dB/K is obtained. To demonstrate the improved <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula>, the subarray optimization without considering <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> is also conducted. Because <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> is not considered, some cases having low <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> is occurred. Compared to the worst case from these results, the proposed subarray optimization strategy improves <inline-formula><tex-math notation="LaTeX">$G/T$</tex-math></inline-formula> by 1.01 dB/K.

[1]  Hai-Young Lee,et al.  Optimization Methodology of Multiple Air Hole Effects in Substrate Integrated Waveguide Applications , 2018, Journal of Electromagnetic Engineering and Science.

[2]  Hosung Choo,et al.  Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed , 2018 .

[3]  Jeongho Park,et al.  Analysis of the Optimal Frequency Band for a Ballistic Missile Defense Radar System , 2018 .

[4]  R. Sorrentino,et al.  Computation of gain, noise figure, and third-order intercept of active array antennas , 2004, IEEE Transactions on Antennas and Propagation.

[5]  S. Demir Efficiency calculation of feed structures and optimum number of antenna elements in a subarray for highest G/T , 2004, IEEE Transactions on Antennas and Propagation.

[6]  Francesco Grimaccia,et al.  Genetical Swarm Optimization: an Evolutionary Algorithm for Antenna Design , 2006 .

[7]  Simsek Demir,et al.  Optimum design of feed structures for high G/T passive and active antenna arrays , 1999 .

[8]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[9]  C. Renard,et al.  Design and measurement of an active array antenna for an airborne X-Band SAR/MTI radar , 2006, 2006 First European Conference on Antennas and Propagation.

[10]  E. L. Holzman Intercept points of active phased array antennas , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[11]  D. W. Hess Measurement of EIRP and antenna response for active antennas with spherical near-field scanning , 2004 .

[12]  U. R. Kraft Gain and G/T of multielement receive antennas with active beamforming networks , 2000 .

[13]  R. Maaskant,et al.  Applying the active antenna impedance to achieve noise match in receiving array antennas , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[14]  J. J. Lee Reply to Comments on “G/T and Noise Figure of Active Array Antennas” , 2017 .