A New Hybrid Algorithm for Multi-Objective Robust Optimization With Interval Uncertainty

[1]  Xiaolin Hu,et al.  Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[2]  Tae Hee Lee,et al.  Robust Design: An Overview , 2006 .

[3]  K. Choi,et al.  Robust Design Concept in Possibility Theory and Optimization for System With Both Random and Fuzzy Input Variables , 2007, DAC 2007.

[4]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[5]  Martha Martins Carvalho,et al.  Demand response models with correlated price data: A robust optimization approach , 2012 .

[6]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[7]  Carlos A. Coello Coello,et al.  An Algorithm Based on Differential Evolution for Multi-Objective Problems , 2005 .

[8]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[9]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[10]  Shigeru Nakayama,et al.  Multi-Objective Particle Swarm Optimization for robust optimization and its hybridization with gradient search , 2009, 2009 IEEE Congress on Evolutionary Computation.

[11]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[12]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[14]  António Gaspar-Cunha,et al.  Robustness in multi-objective optimization using evolutionary algorithms , 2008, Comput. Optim. Appl..

[15]  Z. Mourelatos,et al.  A Design Optimization Method Using Evidence Theory , 2006, DAC 2005.

[16]  Li-Chen Fu,et al.  An improved multiobjective memetic algorithm for permutation flow shop scheduling , 2010, IEEE Congress on Evolutionary Computation.

[17]  Mian Li,et al.  Robust Optimization and Sensitivity Analysis with Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications , 2007 .

[18]  Kalyanmoy Deb,et al.  Reliability-based optimization for multiple constraints with evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[19]  Kai-Yew Lum,et al.  Max-min surrogate-assisted evolutionary algorithm for robust design , 2006, IEEE Transactions on Evolutionary Computation.

[20]  C. A. Canizares,et al.  A Robust Optimization Approach for Planning the Transition to Plug-in Hybrid Electric Vehicles , 2011, IEEE Transactions on Power Systems.

[21]  Jouni Lampinen,et al.  An Extension of Generalized Differential Evolution for Multi-objective Optimization with Constraints , 2004, PPSN.

[22]  Ivo F. Sbalzariniy,et al.  Multiobjective optimization using evolutionary algorithms , 2000 .

[23]  Carl D. Sorensen,et al.  A general approach for robust optimal design , 1993 .

[24]  Kalyanmoy Deb,et al.  Reliability-Based Optimization Using Evolutionary Algorithms , 2009, IEEE Transactions on Evolutionary Computation.

[25]  S. Azarm,et al.  On improving multiobjective genetic algorithms for design optimization , 1999 .

[26]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[27]  S. Azarm,et al.  Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts , 2011 .

[28]  Ramana V. Grandhi,et al.  Quantification of model-form and predictive uncertainty for multi-physics simulation , 2011 .

[29]  S. Azarm,et al.  A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization , 2005, DAC 2005.

[30]  Shapour Azarm,et al.  Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .

[31]  Xiaorong He,et al.  Multi-objective optimization for the periodic operation of the naphtha pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP , 2008, Comput. Chem. Eng..

[32]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[33]  Genichi Taguchi,et al.  Performance analysis design , 1978 .

[34]  Tapabrata Ray,et al.  Towards practical evolutionary robust multi-objective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[35]  Behrang Mansoornejad,et al.  A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reactions , 2008, Comput. Chem. Eng..

[36]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[37]  S. Azarm,et al.  Multi-objective robust optimization using a sensitivity region concept , 2005 .

[38]  Carlos A. Coello Coello,et al.  Simple Feasibility Rules and Differential Evolution for Constrained Optimization , 2004, MICAI.

[39]  Hussein A. Abbass,et al.  Differential Evolution for Solving multiobjective Optimization Problems , 2004, Asia Pac. J. Oper. Res..

[40]  Kyung K. Choi,et al.  Hybrid Analysis Method for Reliability-Based Design Optimization , 2003 .

[41]  Kalyanmoy Deb,et al.  A hybrid multi-objective optimization procedure using PCX based NSGA-II and sequential quadratic programming , 2007, 2007 IEEE Congress on Evolutionary Computation.

[42]  Shigeyoshi Tsutsui,et al.  Genetic algorithms with a robust solution searching scheme , 1997, IEEE Trans. Evol. Comput..

[43]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[44]  Jianhua Zhou,et al.  Sequential Quadratic Programming for Robust Optimization With Interval Uncertainty , 2012 .