The ratio of the extreme to the sum in a random sequence

For X1 , X2 , ..., Xn a sequence of non-negative independent random variables with common distribution function F(t), X(n) denotes the maximum and Sn denotes the sum. The ratio variate Rn = X(n) / Sn is a quantity arising in the analysis of process speedup and the performance of scheduling. O’Brien (J. Appl. Prob. 17:539–545, 1980) showed that as n → ∞, Rn →0 almost surely iff ${\sf E} X_1$ is finite. Here we show that, provided either (1) ${\sf E} X_1^2 $ is finite, or (2) 1 − F (t) is a regularly varying function with index ρ < − 1, then ${\sf E} R_n \sim { {\sf E} X_{(n)} }/{{\sf E} S_n } ,( n \rightarrow \infty )$. An integral representation for the expected ratio is derived, and lower and upper asymptotic bounds are developed to obtain the result. Since ${\sf E} X_{(n)}$ is often known or estimated asymptotically, this result quantifies the rate of convergence of the ratio’s expected value. The result is applied to the performance of multiprocessor scheduling.

[1]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[2]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[3]  Sidney I. Resnick,et al.  Limiting Behaviour of Sums and the Term of Maximum Modulus , 1984 .

[4]  Robert E. Benner,et al.  Development of Parallel Methods for a $1024$-Processor Hypercube , 1988 .

[5]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[6]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[9]  Barry C. Arnold,et al.  p-Norm bounds on the expectation of the maximum of a possibly dependent sample , 1985 .

[10]  D. L. McLeish,et al.  The Expected Ratio of the Sum of Squares to the Square of the Sum , 1982 .

[11]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[12]  F. Olver Asymptotics and Special Functions , 1974 .

[13]  Edward G. Coffman,et al.  On the Expected Relative Performance of List Scheduling , 1985, Oper. Res..

[14]  Narayanaswamy Balakrishnan,et al.  Relations, Bounds and Approximations for Order Statistics , 1989 .

[15]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[16]  N. L. Lawrie,et al.  Comparison Methods for Queues and Other Stochastic Models , 1984 .

[17]  Sidney I. Resnick Point processes, regular variation and weak convergence , 1986 .

[18]  William E. Pruitt,et al.  The Contribution to the Sum of the Summand of Maximum Modulus , 1987 .

[19]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[20]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[21]  Edward G. Coffman,et al.  Probabilistic analysis of packing and partitioning algorithms , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[22]  Peter J. Downey,et al.  Orderings arising from expected extremes, with an application , 1992 .

[23]  Peter J. Downey,et al.  Distribution-free bounds on the expectation of the maximum with scheduling applications , 1990 .

[24]  B. J. Lageweg,et al.  Analysis of Heuristics for Stochastic Programming: Results for Hierarchical Scheduling Problems , 1983, Math. Oper. Res..

[25]  Peter J. Downey,et al.  Bounds and Approximations for Overheads in the Time to Join Parallel Forks , 1995, INFORMS J. Comput..

[26]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[27]  D. Arov,et al.  The Extreme Terms of a Sample and Their Role in the Sum of Independent Variables , 1960 .

[28]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[29]  L. Breiman,et al.  On Some Limit Theorems Similar to the Arc-Sin Law , 1965 .

[30]  Vijay P. Kumar,et al.  Analyzing Scalability of Parallel Algorithms and Architectures , 1994, J. Parallel Distributed Comput..

[31]  Teunis J. Ott,et al.  Load-balancing heuristics and process behavior , 1986, SIGMETRICS '86/PERFORMANCE '86.

[32]  Tunc Geveci,et al.  Advanced Calculus , 2014, Nature.

[33]  Edward G. Coffman,et al.  Computer and job-shop scheduling theory , 1976 .

[34]  Yuji Kasahara,et al.  A note on sums and maxima of independent, identically distributed random variables , 1984 .

[35]  Jan Karel Lenstra,et al.  A framework for the probabilistic analysis of hierarchical planning systems , 1984, Ann. Oper. Res..

[36]  M. Meerschaert Regular Variation in R k , 1988 .

[37]  G. L. O'brien A limit theorem for sample maxima and heavy branches in Galton–Watson trees , 1980 .

[38]  James Pickands,et al.  Moment Convergence of Sample Extremes , 1968 .

[39]  D. Darling THE INFLUENCE OF THE MAXIMUM TERM IN THE ADDITION OF INDEPENDENT RANDOM VARIABLES , 1952 .