Potential and Activities of III-V/Si Tandem Solar Cells

[1]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.

[2]  M. Yamaguchi Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices , 1991 .

[3]  R. Kleiman,et al.  Fabrication of High-Efficiency III–V on Silicon Multijunction Solar Cells by Direct Metal Interconnect , 2014, IEEE Journal of Photovoltaics.

[4]  T. Ueda,et al.  The Influence of Growth Temperature and Thermal Annealing on the Stress in GaAs Layers Grown on Si Substrates , 1988 .

[5]  Gerald Siefer,et al.  Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon , 2014, IEEE Journal of Photovoltaics.

[6]  M. Yamaguchi,et al.  Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates , 1989 .

[7]  Masahiro Akiyama,et al.  Growth of Single Domain GaAs Layer on (100)-Oriented Si Substrate by MOCVD , 1984 .

[8]  Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice , 1988 .

[9]  Herbert Kroemer,et al.  GaAs on Si and related systems: Problems and prospects , 1989 .

[10]  Y. Horikoshi,et al.  Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy , 1991 .

[11]  M. Yamaguchi,et al.  Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates , 1990 .

[12]  Sun Keun Choi,et al.  Dislocation Velocities in GaAs , 1977 .

[13]  H. Okamoto,et al.  Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices , 1987 .

[14]  Sumio Matsuda,et al.  GaAs solar cells grown on Si substrates for space use , 2001 .

[15]  Mantu K. Hudait,et al.  III–V Multijunction Solar Cell Integration with Silicon: Present Status, Challenges and Future Outlook , 2014 .

[16]  H. Mori,et al.  Dislocation generation of GaAs on Si in the cooling stage , 1990 .

[17]  M. Yamaguchi,et al.  Thermal annealing effects of defect reduction in GaAs on Si substrates , 1990 .

[18]  M. Yamaguchi,et al.  Film thickness dependence of dislocation density reduction in GaAs‐on‐Si substrates , 1990 .

[19]  Y. Okada,et al.  Low dislocation density GaAs on Si heteroepitaxy with atomic hydrogen irradiation for optoelectronic integration , 1993 .

[20]  Yoshio Itoh,et al.  Defect reduction effects in GaAs on Si substrates by thermal annealing , 1988 .

[21]  Ephraim Suhir,et al.  Stresses in Bi-Metal Thermostats , 1986 .

[22]  Takashi Jimbo,et al.  Photovoltaic properties of an AlxGa1−xAs solar cell (x=0–0.22) grown on Si substrate by metalorganic chemical vapor deposition and thermal cycle annealing , 1996 .

[23]  B. G. Yacobi,et al.  Dislocation density reduction through annihilation in lattice-mismatched semiconductors grown by molecular-beam epitaxy , 1988 .

[24]  Chikara Amano,et al.  Efficiency calculations of thin‐film GaAs solar cells on Si substrates , 1985 .