Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices

[1]  Srihari Keshavamurthy,et al.  Annual Review of Physical Chemistry , 2018 .

[2]  Jin Zhao,et al.  Plasmonic coupling at a metal/semiconductor interface , 2017 .

[3]  G. Wiederrecht,et al.  Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface , 2017, Nature Communications.

[4]  Adam D. Dunkelberger,et al.  Quantification of Efficient Plasmonic Hot-Electron Injection in Gold Nanoparticle-TiO2 Films. , 2017, Nano letters.

[5]  Kathleen A. Schwarz,et al.  JDFTx: Software for joint density-functional theory , 2017, SoftwareX.

[6]  William A. Goddard,et al.  Transport of hot carriers in plasmonic nanostructures , 2017, Physical Review Materials.

[7]  William A. Goddard,et al.  Far-from-equilibrium transport of excited carriers in nanostructures , 2017, 1707.07060.

[8]  M. Moskovits,et al.  Hot Charge Carrier Transmission from Plasmonic Nanostructures. , 2017, Annual review of physical chemistry.

[9]  Peter Nordlander,et al.  Hot Hole Photoelectrochemistry on Au@SiO2@Au Nanoparticles. , 2017, The journal of physical chemistry letters.

[10]  Sang-Gook Kim,et al.  Effect of anisotropic electron momentum distribution of surface plasmon on internal photoemission of a Schottky hot carrier device. , 2017, Optics express.

[11]  Ravishankar Sundararaman,et al.  Plasmonic hot electron transport drives nano-localized chemistry , 2017, Nature Communications.

[12]  J. Valentine,et al.  Harvesting the loss: surface plasmon-based hot electron photodetection , 2017 .

[13]  Ravishankar Sundararaman,et al.  Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. , 2016, Physical review letters.

[14]  H. Atwater,et al.  Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion , 2016 .

[15]  C. Yam,et al.  Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells. , 2016, The journal of physical chemistry letters.

[16]  William A. Goddard,et al.  Ab initio phonon coupling and optical response of hot electrons in plasmonic metals , 2016, 1602.00625.

[17]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[18]  Svetlana Dligatch,et al.  Hot Carrier Extraction with Plasmonic Broadband Absorbers. , 2016, ACS nano.

[19]  Wei Li,et al.  Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials , 2015, Nature Communications.

[20]  T. Lian,et al.  Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.

[21]  Chloe Doiron,et al.  Direct Plasmon-Driven Photoelectrocatalysis. , 2015, Nano letters.

[22]  Hangqi Zhao,et al.  Distinguishing between plasmon-induced and photoexcited carriers in a device geometry , 2015, Nature Communications.

[23]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[24]  Yurui Fang,et al.  Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures. , 2015, Nano letters.

[25]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[26]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[27]  Wei Li,et al.  Metamaterial perfect absorber based hot electron photodetection. , 2014, Nano letters.

[28]  Nathan S. Lewis,et al.  Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates , 2014 .

[29]  Hui Zhang,et al.  Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement , 2014 .

[30]  Mark L Brongersma,et al.  Hot-electron photodetection with a plasmonic nanostripe antenna. , 2014, Nano letters.

[31]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[32]  Viktoriia E. Babicheva,et al.  Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects. , 2013, Nanoscale.

[33]  J. Szlachetko,et al.  Direct observation of charge separation on Au localized surface plasmons , 2013 .

[34]  Peter Nordlander,et al.  Embedding plasmonic nanostructure diodes enhances hot electron emission. , 2013, Nano letters.

[35]  K. Catchpole,et al.  Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits , 2012 .

[36]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[37]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[38]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[39]  Yu Hang Leung,et al.  Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells , 2009 .

[40]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[41]  Tetsu Tatsuma,et al.  Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. , 2004, Chemical communications.

[42]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[43]  F. Sanchez-Sinencio,et al.  Theory of Internal Photoemission , 1973 .

[44]  M. Stowell,et al.  Handbook of Chemistry and Physics 50th Edn , 1970 .

[45]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[46]  R. Fowler,et al.  The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures , 1931 .

[47]  C. Fabry,et al.  On the Application of Interference Phenomena to the Solution of Various Problems of Spectroscopy and Metrology , 1899 .

[48]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[49]  S. M. Sze Physics of semiconductor devices /2nd edition/ , 1981 .

[50]  October I Physical Review Letters , 2022 .