Uncertainty Quantification of Hydrologic Predictions and Risk Analysis

[1]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[2]  Y. P. Li,et al.  Planning Regional Water Resources System Using an Interval Fuzzy Bi-Level Programming Method , 2010 .

[3]  Fangjian Wang,et al.  An Improved Particle Filter Algorithm Based on Ensemble Kalman Filter and Markov Chain Monte Carlo Method , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[5]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[6]  Amir AghaKouchak,et al.  Entropy–Copula in Hydrology and Climatology , 2014 .

[7]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[8]  T. Nakayama,et al.  Impact of the Three-Gorges Dam and water transfer project on Changjiang floods , 2013 .

[9]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[10]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[11]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[12]  Karl Iagnemma,et al.  A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty , 2012 .

[13]  Zongxue Xu,et al.  Risk estimation for flood and drought: case studies , 2001 .

[14]  .. M.Arshad,et al.  Anderson Darling and Modified Anderson Darling Tests for Generalized Pareto Distribution , 2003 .

[15]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[16]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[17]  Erwin Zehe,et al.  Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test , 2011 .

[18]  J. Vrugt,et al.  Approximate Bayesian Computation using Markov Chain Monte Carlo simulation: DREAM(ABC) , 2014 .

[19]  Shenglian Guo,et al.  Flood Coincidence Risk Analysis Using Multivariate Copula Functions , 2012, Springer Water.

[20]  P. Gelder,et al.  Forecasting daily streamflow using hybrid ANN models , 2006 .

[21]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[22]  Vijay P. Singh,et al.  Single‐site monthly streamflow simulation using entropy theory , 2011 .

[23]  N. Wiener The Homogeneous Chaos , 1938 .

[24]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[25]  Jasper A. Vrugt,et al.  Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications (online first) , 2012 .

[26]  K. Burnham,et al.  Model selection: An integral part of inference , 1997 .

[27]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[28]  Daoyong Yang,et al.  Simultaneous Estimation of Relative Permeability and Capillary Pressure Using Ensemble-Based History Matching Techniques , 2012, Transport in Porous Media.

[29]  P. E. O'connell,et al.  An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system , 1986 .

[30]  Shenglian Guo,et al.  Drought Analysis Using Copulas , 2013, Springer Water.

[31]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[32]  Vijay P. Singh,et al.  The NWS River Forecast System - catchment modeling. , 1995 .

[33]  Liu Zhi-yu,et al.  Trends of Extreme Flood Events in the Pearl River Basin during 1951–2010 , 2013 .

[34]  S. P. Simonovic,et al.  Bivariate flood frequency analysis: Part 1. Determination of marginals by parametric and nonparametric techniques , 2008 .

[35]  H. Kunsch,et al.  Bridging the ensemble Kalman and particle filters , 2012, 1208.0463.

[36]  Chang’an Li,et al.  Human impact on floods and flood disasters on the Yangtze River , 2001 .

[37]  Mitja Brilly,et al.  Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River , 2015 .

[38]  R. Ibbitt,et al.  Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model , 2007 .

[39]  P. Farrell,et al.  Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test , 2006 .

[40]  Sheng Yue,et al.  A bivariate gamma distribution for use in multivariate flood frequency analysis , 2001 .

[41]  S. Hagemann,et al.  Climate change impact on available water resources obtained using multiple global climate and hydrology models , 2012 .

[42]  Seong Jin Noh,et al.  Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities , 2012 .

[43]  Andrew W. Western,et al.  Assimilation of stream discharge for flood forecasting: The benefits of accounting for routing time lags , 2013 .

[44]  Soroosh Sorooshian,et al.  General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis , 2009 .

[45]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[46]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[47]  R. Nelsen An Introduction to Copulas , 1998 .

[48]  Renaud Hostache,et al.  Propagation of uncertainties in coupled hydro-meteorological forecasting systems: a stochastic approach for the assessment of the total predictive uncertainty. , 2011 .

[49]  P. Fearnhead,et al.  On‐line inference for hidden Markov models via particle filters , 2003 .

[50]  C. T. Haan,et al.  Statistical Methods In Hydrology , 1977 .

[51]  Bernard Bobée,et al.  Towards a systematic approach to comparing distributions used in flood frequency analysis , 1993 .

[52]  P. Ciais,et al.  The impacts of climate change on water resources and agriculture in China , 2010, Nature.

[53]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[54]  Faisal Hossain,et al.  Hydrological Risk Assessment of Old Dams: Case Study on Wilson Dam of Tennessee River Basin , 2012 .

[55]  Rao S. Govindaraju,et al.  A copula-based joint deficit index for droughts. , 2010 .

[56]  Breanndán Ó Nualláin,et al.  Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .

[57]  Vijay P. Singh,et al.  Hydrologic Synthesis Using Entropy Theory: Review , 2011 .

[58]  V. Singh,et al.  Bivariate Flood Frequency Analysis Using the Copula Method , 2006 .

[59]  Vijay P. Singh,et al.  A Multivariate Stochastic Flood Analysis Using Entropy , 1987 .

[60]  G. Lannoy,et al.  The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter , 2011 .

[61]  V. Singh,et al.  Entropy-based assessment and clustering of potential water resources availability , 2005 .

[62]  F. Ludwig,et al.  Global water resources affected by human interventions and climate change , 2013, Proceedings of the National Academy of Sciences.

[63]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[64]  Hamid Moradkhani,et al.  Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting , 2012 .

[65]  Daoyong Yang,et al.  Estimation of relative permeability and capillary pressure for tight formations by assimilating field production data , 2014 .

[66]  Andrea Petroselli,et al.  Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation , 2012 .

[67]  Vijay P. Singh,et al.  Bivariate rainfall frequency distributions using Archimedean copulas , 2007 .

[68]  Yuguo Chen,et al.  State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter , 2009 .

[69]  Taha B. M. J. Ouarda,et al.  The Gumbel mixed model for flood frequency analysis , 1999 .

[70]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[71]  R. Reichle Data assimilation methods in the Earth sciences , 2008 .

[72]  Guohe Huang,et al.  Incorporation of Inexact Dynamic Optimization with Fuzzy Relation Analysis for Integrated Climate Change Impact Study , 1996 .

[73]  C. Cunnane Statistical distributions for flood frequency analysis , 1989 .

[74]  Pierre F. J. Lermusiaux,et al.  Data Assimilation with Gaussian Mixture Models Using the Dynamically Orthogonal Field Equations. Part I: Theory and Scheme , 2013 .

[75]  Renzo Rosso,et al.  Bivariate Statistical Approach to Check Adequacy of Dam Spillway , 2005 .

[76]  S. Simonovic,et al.  Bivariate flood frequency analysis. Part 2: a copula‐based approach with mixed marginal distributions , 2009 .

[77]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .

[78]  Conglin Wu,et al.  Hydrological Predictions: Using Data-Driven Models Coupled with Data Preprocessing Techniques , 2011 .

[79]  M. Clark,et al.  Operational hydrological data assimilation with the recursive ensemble Kalman filter , 2013 .

[80]  Soroosh Sorooshian,et al.  Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method , 2012 .

[81]  Zhao Ren-jun,et al.  The Xinanjiang model applied in China , 1992 .

[82]  Daoyong Yang,et al.  Simultaneous estimation of relative permeability and capillary pressure for tight formations using ensemble-based history matching method , 2013 .

[83]  Robin De Keyser,et al.  Improving particle filters in rainfall‐runoff models: Application of the resample‐move step and the ensemble Gaussian particle filter , 2013 .

[84]  Ibrahim Hoteit,et al.  Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter , 2011, 1108.0158.

[85]  Keith Beven,et al.  The Institute of Hydrology distributed model , 1987 .

[86]  Wei Li,et al.  Inexact fuzzy two-stage programming for water resources management in an environment of fuzziness and randomness , 2012, Stochastic Environmental Research and Risk Assessment.

[87]  Konstantine P. Georgakakos,et al.  A generalized stochastic hydrometeorological model for flood and flash‐flood forecasting: 1. Formulation , 1986 .

[88]  Dennis McLaughlin,et al.  An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering , 2002 .

[89]  Yi Zheng,et al.  Uncertainty assessment for watershed water quality modeling: A Probabilistic Collocation Method based approach , 2011 .

[90]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[91]  Tong Jiang,et al.  Hydrological modeling of River Xiangxi using SWAT2005: A comparison of model parameterizations using station and gridded meteorological observations , 2010 .

[92]  Dong-Jun Seo,et al.  The distributed model intercomparison project (DMIP): Motivation and experiment design , 2004 .

[93]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[94]  Qinghua Cai,et al.  The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region , 2009 .

[95]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[96]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[97]  Jery R. Stedinger,et al.  Water Resources Systems Planning And Management , 2006 .

[98]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[99]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[100]  Y. Tachikawa,et al.  Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization , 2011 .

[101]  Fateh Chebana,et al.  Exploratory functional flood frequency analysis and outlier detection , 2012 .

[102]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[103]  Vijay P. Singh,et al.  Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data , 2010 .

[104]  Taesam Lee,et al.  Copula-based stochastic simulation of hydrological data applied to Nile River flows , 2011 .

[105]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[106]  Niko E. C. Verhoest,et al.  Fitting bivariate copulas to the dependence structure between storm characteristics: A detailed analysis based on 105 year 10 min rainfall , 2010 .

[107]  M. Stephens,et al.  K-Sample Anderson–Darling Tests , 1987 .

[108]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[109]  Hoshin Vijai Gupta,et al.  Model identification for hydrological forecasting under uncertainty , 2005 .

[110]  Jasper A. Vrugt,et al.  Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization / Optimisation de paramètres semi-distribués et évaluation de l'incertitude pour la simulation de débits à grande échelle par l'utilisation d'une optimisation globale , 2008 .

[111]  A. W. Heemink,et al.  The ensemble particle filter (EnPF) in rainfall-runoff models , 2009 .

[112]  Francesco Serinaldi,et al.  Asymmetric copula in multivariate flood frequency analysis , 2006 .

[113]  André St-Hilaire,et al.  A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Québec, Canada) record flood , 2014, Stochastic Environmental Research and Risk Assessment.

[114]  V. Singh,et al.  THE USE OF ENTROPY IN HYDROLOGY AND WATER RESOURCES , 1997 .