Locally Parallel Texture Modeling

This article presents a new adaptive framework for locally parallel texture modeling. Oscillating patterns are modeled with functionals that constrain the local Fourier decomposition of the texture. We first introduce a texture functional which is a weighted Hilbert norm. The weights on the local Fourier atoms are optimized to match the local orientation and frequency of the texture. This adaptive model is used to solve image processing inverse problems, such as image decomposition and inpainting. The local orientation and frequency of the texture component are adaptively estimated during the minimization process. To improve inpainting performances over large missing regions, we introduce a highly nonconvex generalization of our texture model. This new model constrains the amplitude of the texture and allows one to impose an arbitrary oscillation profile. Numerical results illustrate the effectiveness of the method.

[1]  Joel A. Tropp,et al.  ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION , 2006 .

[2]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[3]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[4]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[5]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[6]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[7]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[8]  Stéphane Mallat,et al.  A review of Bandlet methods for geometrical image representation , 2007, Numerical Algorithms.

[9]  Yann Gousseau,et al.  The TVL1 Model: A Geometric Point of View , 2009, Multiscale Model. Simul..

[10]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[11]  I. Daubechies,et al.  On Some Iterative Concepts for Image Restoration , 2008 .

[12]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  Daniel Cohen-Or,et al.  Fragment-based image completion , 2003, ACM Trans. Graph..

[14]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[15]  L. Vese,et al.  IMAGE RECOVERY USING FUNCTIONS OF BOUNDED VARIATION AND SOBOLEV SPACES OF NEGATIVE DIFFERENTIABILITY , 2009 .

[16]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[17]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[18]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[19]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[20]  Tony F. Chan,et al.  Total Variation Denoising and Enhancement of Color Images Based on the CB and HSV Color Models , 2001, J. Vis. Commun. Image Represent..

[21]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[22]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  Gabriel Peyré,et al.  Texture Synthesis with Grouplets , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[25]  Jean-François Aujol,et al.  Color image decomposition and restoration , 2006, J. Vis. Commun. Image Represent..

[26]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[27]  Ingrid Daubechies,et al.  Variational image restoration by means of wavelets: simultaneous decomposition , 2005 .

[28]  Patrick Pérez,et al.  Geometrically Guided Exemplar-Based Inpainting , 2011, SIAM J. Imaging Sci..

[29]  Andrew Blake,et al.  PatchWorks: Example-Based Region Tiling for Image Editing , 2004 .

[30]  Guillermo Sapiro,et al.  A Variational Framework for Non-local Image Inpainting , 2009, EMMCVPR.

[31]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[32]  J. Morel,et al.  On image denoising methods , 2004 .

[33]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[34]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[35]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[36]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[37]  Saïd Ladjal,et al.  Exemplar-Based Inpainting from a Variational Point of View , 2010, SIAM J. Math. Anal..

[38]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[39]  J. Aujol,et al.  Some algorithms for total variation based image restoration , 2008 .

[40]  Nikos Komodakis,et al.  Image Completion Using Global Optimization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[42]  Jean-François Aujol,et al.  Mathematical Modeling of Textures: Application to Color Image Decomposition with a Projected Gradient Algorithm , 2010, Journal of Mathematical Imaging and Vision.

[43]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[44]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[45]  Guy Gilboa,et al.  Constrained and SNR-Based Solutions for TV-Hilbert Space Image Denoising , 2006, Journal of Mathematical Imaging and Vision.

[46]  Harry Shum,et al.  Image completion with structure propagation , 2005, ACM Trans. Graph..

[47]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[48]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[49]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[50]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[51]  Rémi Gribonval,et al.  Sparse approximations in signal and image processing , 2006, Signal Process..

[52]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[53]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[54]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[55]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[56]  Nipun Kwatra,et al.  Texture optimization for example-based synthesis , 2005, ACM Trans. Graph..