Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues
暂无分享,去创建一个
[1] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[2] J. Kemeny. Generalization of a fundamental matrix , 1981 .
[3] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[4] H. M. Taylor,et al. An introduction to stochastic modeling , 1985 .
[5] P. Diaconis,et al. SHUFFLING CARDS AND STOPPING-TIMES , 1986 .
[6] L. Devroye. A Course in Density Estimation , 1987 .
[7] David J. Aldous,et al. Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .
[8] P. Diaconis,et al. Strong Stationary Times Via a New Form of Duality , 1990 .
[9] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[10] P. Guttorp. Stochastic modeling of scientific data , 1995 .
[11] V. Kulkarni. Modeling and Analysis of Stochastic Systems , 1996 .
[12] Charles M. Grinstead,et al. Introduction to probability , 1999, Statistics for the Behavioural Sciences.
[13] John N. Tsitsiklis,et al. Introduction to Probability , 2002 .