An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold

Studies in rodent brain slices suggest that seizures in focal epilepsies are sustained and propagated by the reciprocal interaction between neurons and astroglial cells

[1]  S. Oliet,et al.  Long term potentiation depends on release of D-serine from astrocytes , 2009, Nature.

[2]  U. Heinemann,et al.  Blood–brain barrier breakdown-inducing astrocytic transformation: Novel targets for the prevention of epilepsy , 2009, Epilepsy Research.

[3]  Asla Pitkänen,et al.  Research priorities in epilepsy for the next decade—A representative view of the European scientific community: Summary of the ILAE Epilepsy Research Workshop, Brussels, 17–18 January 2008 , 2009 .

[4]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[5]  E. Shigetomi,et al.  Two Forms of Astrocyte Calcium Excitability Have Distinct Effects on NMDA Receptor-Mediated Slow Inward Currents in Pyramidal Neurons , 2008, The Journal of Neuroscience.

[6]  R. Dingledine,et al.  Astrocytes in the Epileptic Brain , 2008, Neuron.

[7]  M. Curtis,et al.  Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood–brain barrier permeability , 2008, Neuroscience.

[8]  G. Carmignoto,et al.  Enhanced Astrocytic Ca2+ Signals Contribute to Neuronal Excitotoxicity after Status Epilepticus , 2007, The Journal of Neuroscience.

[9]  Qingming Luo,et al.  Regulated ATP release from astrocytes through lysosome exocytosis , 2007, Nature Cell Biology.

[10]  T. Murphy,et al.  Rapid Astrocyte Calcium Signals Correlate with Neuronal Activity and Onset of the Hemodynamic Response In Vivo , 2007, The Journal of Neuroscience.

[11]  C. J. Lee,et al.  Astrocytic control of synaptic NMDA receptors , 2007, The Journal of physiology.

[12]  R. Yuste,et al.  Feedforward Inhibition Contributes to the Control of Epileptiform Propagation Speed , 2007, The Journal of Neuroscience.

[13]  Khaleel Bhaukaurally,et al.  Glutamate exocytosis from astrocytes controls synaptic strength , 2007, Nature Neuroscience.

[14]  David F. Meaney,et al.  mGluR5 stimulates gliotransmission in the nucleus accumbens , 2007, Proceedings of the National Academy of Sciences.

[15]  Brendon O. Watson,et al.  Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex , 2006, The Journal of Neuroscience.

[16]  Harald Sontheimer,et al.  Anion channels in astrocytes: Biophysics, pharmacology, and function , 2006, Glia.

[17]  James O McNamara,et al.  Molecular Signaling Mechanisms Underlying Epileptogenesis , 2006, Science's STKE.

[18]  D. Binder,et al.  Functional changes in astroglial cells in epilepsy , 2006, Glia.

[19]  S. Gobbo,et al.  Astrocytic Glutamate Is Not Necessary for the Generation of Epileptiform Neuronal Activity in Hippocampal Slices , 2006, The Journal of Neuroscience.

[20]  R. D’Ambrosio Does Glutamate Released by Astrocytes Cause Focal Epilepsy? , 2006, Epilepsy currents.

[21]  R. North,et al.  NMDA Receptors Mediate Neuron-to-Glia Signaling in Mouse Cortical Astrocytes , 2006, The Journal of Neuroscience.

[22]  M. C. Angulo,et al.  Target cell-specific modulation of neuronal activity by astrocytes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Takano,et al.  Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo , 2006, Nature Neuroscience.

[24]  J. Lacaille,et al.  GABAergic Network Activation of Glial Cells Underlies Hippocampal Heterosynaptic Depression , 2006, The Journal of Neuroscience.

[25]  Christian Steinhäuser,et al.  Astrocyte dysfunction in neurological disorders: a molecular perspective , 2006, Nature Reviews Neuroscience.

[26]  M. de Curtis,et al.  Propagation Dynamics of Epileptiform Activity Acutely Induced by Bicuculline in the Hippocampal–Parahippocampal Region of the Isolated Guinea Pig Brain , 2005, Epilepsia.

[27]  B. Connors,et al.  Initiation, Propagation, and Termination of Epileptiform Activity in Rodent Neocortex In Vitro Involve Distinct Mechanisms , 2005, The Journal of Neuroscience.

[28]  T. Takano,et al.  An astrocytic basis of epilepsy , 2005, Nature Medicine.

[29]  Loredano Pollegioni,et al.  Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Perea,et al.  Properties of Synaptically Evoked Astrocyte Calcium Signal Reveal Synaptic Information Processing by Astrocytes , 2005, The Journal of Neuroscience.

[31]  S. Gobbo,et al.  Neuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors , 2005, Neuron.

[32]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[33]  M. C. Angulo,et al.  Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus , 2004, The Journal of Neuroscience.

[34]  G. Buzsáki,et al.  Calcium Dynamics of Cortical Astrocytic Networks In Vivo , 2004, PLoS biology.

[35]  Todd A Fiacco,et al.  Intracellular Astrocyte Calcium Waves In Situ Increase the Frequency of Spontaneous AMPA Receptor Currents in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[36]  Tullio Pozzan,et al.  Glutamate‐mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes , 2003, The Journal of physiology.

[37]  M. de Curtis,et al.  Epileptiform ictal discharges are prevented by periodic interictal spiking in the olfactory cortex , 2003, Annals of neurology.

[38]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.

[39]  Eduardo D. Martín,et al.  Synaptically Released Acetylcholine Evokes Ca2+Elevations in Astrocytes in Hippocampal Slices , 2002, The Journal of Neuroscience.

[40]  R. S. Jones,et al.  NR2B-containing NMDA autoreceptors at synapses on entorhinal cortical neurons. , 2001, Journal of neurophysiology.

[41]  M. Zonta,et al.  Cytosolic Calcium Oscillations in Astrocytes May Regulate Exocytotic Release of Glutamate , 2001, The Journal of Neuroscience.

[42]  F. D. da Silva,et al.  Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy , 2000, The European journal of neuroscience.

[43]  R. Balázs,et al.  Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate‐induced epileptic seizures , 2000, Glia.

[44]  M B Jackson,et al.  Voltage imaging of epileptiform activity in slices from rat piriform cortex: onset and propagation. , 1998, Journal of neurophysiology.

[45]  G Biella,et al.  Simultaneous investigation of the neuronal and vascular compartments in the guinea pig brain isolated in vitro. , 1998, Brain research. Brain research protocols.

[46]  Y Tsau,et al.  Initiation of spontaneous epileptiform activity in the neocortical slice. , 1998, Journal of neurophysiology.

[47]  T. Pozzan,et al.  On the Role of Voltage-Dependent Calcium Channels in Calcium Signaling of Astrocytes In Situ , 1998, The Journal of Neuroscience.

[48]  Tullio Pozzan,et al.  Prostaglandins stimulate calcium-dependent glutamate release in astrocytes , 1998, Nature.

[49]  M. Avoli,et al.  CA3-Driven Hippocampal-Entorhinal Loop Controls Rather than Sustains In Vitro Limbic Seizures , 1997, The Journal of Neuroscience.

[50]  T. Pozzan,et al.  Intracellular Calcium Oscillations in Astrocytes: A Highly Plastic, Bidirectional Form of Communication between Neurons and Astrocytes In Situ , 1997, The Journal of Neuroscience.

[51]  P. Calabresi,et al.  Epileptiform discharge induced by 4-aminopyridine in magnesium-free medium in neocortical neurons: physiological and pharmacological characterization , 1997, Neuroscience.

[52]  F. Conti,et al.  Neuronal and glial localization of NMDA receptors in the cerebral cortex , 1997, Molecular Neurobiology.

[53]  K. McCarthy,et al.  Hippocampal Astrocytes In Situ Respond to Glutamate Released from Synaptic Terminals , 1996, The Journal of Neuroscience.

[54]  Fang Liu,et al.  Glutamate-mediated astrocyte–neuron signalling , 1994, Nature.

[55]  H. Kettenmann,et al.  Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice , 1994, Hippocampus.

[56]  M. Hines,et al.  Axon terminal hyperexcitability associated with epileptogenesis in vitro. I. Origin of ectopic spikes. , 1993, Journal of neurophysiology.

[57]  S. Stasheff,et al.  Axon terminal hyperexcitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors. , 1993, Journal of neurophysiology.

[58]  Denis Paré,et al.  The electrophysiology of the olfactory–hippocampal circuit in the isolated and perfused adult mammalian brain in vitro , 1991, Hippocampus.

[59]  M. Avoli,et al.  Physiology and pharmacology of epileptiform activity induced by 4-aminopyridine in rat hippocampal slices. , 1991, Journal of neurophysiology.

[60]  John Gordon Ralph Jefferys Basic mechanisms of focal epilepsies , 1990, Experimental physiology.

[61]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[62]  G. Carmignoto,et al.  Enhanced Astrocytic Ca 2 + Signals Contribute to Neuronal Excitotoxicity after Status Epilepticus , 2010 .

[63]  Araque Alfonso Astrocytes potentiate transmitter release at single hippocampal synapses , 2009 .

[64]  F. Kirchhoff,et al.  GFAP promoter‐controlled EGFP‐expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue , 2001, Glia.

[65]  H. Berg,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S7 Tables S1 to S3 References Movies S1 to S6 Tuned Responses of Astrocytes and Their Influence on Hemodynamic Signals in the Visual Cortex , 2022 .