Boreal snow cover variations induced by aerosol emissions in the middle of the 21st century

Introduction Conclusions References

[1]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[2]  Gerhard Krinner,et al.  An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models , 2012 .

[3]  Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability , 2012 .

[4]  T. Kirchstetter,et al.  Black-carbon reduction of snow albedo , 2012 .

[5]  O. Boucher,et al.  The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol , 2012 .

[6]  A. Voldoire,et al.  How does the atmospheric variability drive the aerosol residence time in the Arctic region? , 2012 .

[7]  D. Lettenmaier,et al.  The role of surface energy fluxes in pan-Arctic snow cover changes , 2011 .

[8]  John S. Strum,et al.  Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport , 2011 .

[9]  J. Stroeve,et al.  On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent , 2010 .

[10]  J. A. Silberman,et al.  Arctic shipping emissions inventories and future scenarios , 2010 .

[11]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[12]  Zbigniew Klimont,et al.  Anthropogenic sulfur dioxide emissions: 1850–2005 , 2010 .

[13]  Keith P. Shine,et al.  Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation , 2010 .

[14]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[15]  M. Chin,et al.  Evaluation of black carbon estimations in global aerosol models , 2009 .

[16]  M. Krawchuk,et al.  Implications of changing climate for global wildland fire , 2009 .

[17]  Claire Granier,et al.  Gridded emissions in support of IPCC AR5 , 2009 .

[18]  M. Turetsky,et al.  Impacts of climate change on fire activity and fire management in the circumboreal forest , 2009 .

[19]  Joshua P. Schwarz,et al.  Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008 , 2009 .

[20]  Thomas H. Painter,et al.  Springtime warming and reduced snow cover from carbonaceous particles , 2008 .

[21]  Jean-Pascal van Ypersele de Strihou,et al.  Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies , 2008 .

[22]  Mian Chin,et al.  A multi-model assessment of pollution transport to the Arctic , 2008 .

[23]  Ross D. Brown,et al.  Recent Northern Hemisphere snow cover extent trends and implications for the snow‐albedo feedback , 2007 .

[24]  Ann M. Fridlind,et al.  Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies , 2007 .

[25]  N. Nakicenovic,et al.  Scenarios of long-term socio-economic and environmental development under climate stabilization , 2007 .

[26]  Axel Lauer,et al.  The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment , 2007 .

[27]  H. Akimoto,et al.  An Asian emission inventory of anthropogenic emission sources for the period 1980-2020 , 2007 .

[28]  A. Hall,et al.  What Controls the Strength of Snow-Albedo Feedback? , 2007 .

[29]  Aircraft pollution – a futuristic view , 2007 .

[30]  D. Shindell Local and remote contributions to Arctic warming , 2007 .

[31]  Tami C. Bond,et al.  Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000 , 2007 .

[32]  M. Haeffelin,et al.  Assessment of physical parameterizations using a global climate model with stretchable grid and nudging , 2007 .

[33]  Marika M. Holland,et al.  Perspectives on the Arctic's Shrinking Sea-Ice Cover , 2007, Science.

[34]  A. Stohl,et al.  Arctic Air Pollution: Origins and Impacts , 2007, Science.

[35]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[36]  L. Hinzman,et al.  Observations: Changes in Snow, Ice and Frozen Ground , 2007 .

[37]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[38]  Y. Balkanski,et al.  Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data , 2006 .

[39]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[40]  A. Stohl Characteristics of atmospheric transport into the Arctic troposphere , 2006 .

[41]  O. Boucher,et al.  Ice-free glacial northern Asia due to dust deposition on snow , 2006 .

[42]  Alex Hall,et al.  Assessing Snow Albedo Feedback in Simulated Climate Change , 2022 .

[43]  R. Ruedy,et al.  Role of tropospheric ozone increases in 20th‐century climate change , 2006 .

[44]  Chuanfeng Zhao,et al.  Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes , 2006, Nature.

[45]  J. Francis,et al.  The Arctic Amplification Debate , 2006 .

[46]  D. Lubin,et al.  A climatologically significant aerosol longwave indirect effect in the Arctic , 2006, Nature.

[47]  Andreas Roesch,et al.  Evaluation of surface albedo and snow cover in AR4 coupled climate models , 2005 .

[48]  Allan Frei,et al.  Decadal to century scale trends in North American snow extent in coupled atmosphere‐ocean general circulation models , 2005 .

[49]  V. Eyring,et al.  Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050 , 2005 .

[50]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[51]  J. Haywood,et al.  The direct radiative effect of biomass burning aerosols over southern Africa , 2005 .

[52]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[53]  Changes in Snow Cover and Snow Water Equivalent Due to Global Warming Simulated by a 20km-mesh Global Atmospheric Model , 2005 .

[54]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[55]  Mark Z. Jacobson,et al.  Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity , 2004 .

[56]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[57]  Jean-Francois Lamarque,et al.  Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation: INTERACTIVE CHEMISTRY IN LMDZ , 2004 .

[58]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[59]  A. Ohmura,et al.  Snow Cover Fraction In A General Circulation Model , 2001 .

[60]  J. Penner,et al.  Aerosols, their Direct and Indirect Effects , 2001 .

[61]  Y. Balkanski,et al.  Modeling the atmospheric distribution of mineral aerosol : Comparison with ground measurements and satellite observations for yearly and synoptic timescales over the North Atlantic , 2000 .

[62]  A. A. Chursin,et al.  The 1997 spectroscopic GEISA databank , 1999 .

[63]  Howard Conway,et al.  Albedo of dirty snow during conditions of melt , 1996 .

[64]  G. Shaw The Arctic Haze Phenomenon , 1995 .

[65]  H. Douville,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[66]  Antony D. Clarke,et al.  Soot in the Arctic snowpack: a cause for perturbations in radiative transfer , 1985 .

[67]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[68]  J. Royer,et al.  A new snow parameterization for the M 6 t 6 o-France climate model Part II : validation in a 3-D GCM experiment , 2022 .