On the Identification of Zero Variables in an Interior-Point Framework

We consider column sufficient linear complementarity problems and study the problem of identifying those variables that are zero at a solution. To this end we propose a new, computationally inexpensive technique that is based on growth functions. We analyze in detail the theoretical properties of the identification technique and test it numerically. The identification technique is particularly suited to interior-point methods but can be applied to a wider class of methods.

[1]  F. Potra,et al.  Superlinearly Convergent Infeasible-Interior-Point Algorithm for Degenerate LCP , 1998 .

[2]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[3]  P. Tseng Growth behavior of a class of merit functions for the nonlinear complementarity problem , 1996 .

[4]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[5]  R. Tapia Role of slack variables in quasi-Newton methods for constrained optimization , 1979 .

[6]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[7]  Yin Zhang,et al.  On the convergence rate of Newton interior-point methods in the absence of strict complementarity , 1996, Comput. Optim. Appl..

[8]  Yin Zhang,et al.  Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .

[9]  Yin Zhang,et al.  A Study of Indicators for Identifying Zero Variables in Interior-Point Methods , 1994, SIAM Rev..

[10]  Elmer Earl. Branstetter,et al.  The theory of linear programming , 1963 .

[11]  Stephen J. Wright,et al.  Local convergence of interior-point algorithms for degenerate monotone LCP , 1994, Comput. Optim. Appl..

[12]  R. Cottle,et al.  Sufficient matrices and the linear complementarity problem , 1989 .

[13]  M. Fukushima,et al.  Equivalence of the generalized complementarity problem to differentiable unconstrained minimization , 1996 .

[14]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[15]  Olvi L. Mangasarian,et al.  Error bounds for nondegenerate monotone linear complementarity problems , 1990, Math. Program..

[16]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[17]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[18]  Olvi L. Mangasarian,et al.  Error bounds for monotone linear complementarity problems , 1986, Math. Program..

[19]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[20]  L. Ji Tapia indicators and nite termination ofinfeasible { interior { point methods for degenerate , 1995 .

[21]  Paul Tseng,et al.  Error Bound and Convergence Analysis of Matrix Splitting Algorithms for the Affine Variational Inequality Problem , 1992, SIAM J. Optim..

[22]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .