Solving Multiple Objective Programming Problems Using Feed-Forward Artificial Neural Networks: The Interactive FFANN Procedure

In this paper, we propose a new interactive procedure for solving multiple objective programming problems. Based upon feed-forward artificial neural networks FFANNs, the method is called the Interactive FFANN Procedure. In the procedure, the decision maker articulates preference information over representative samples from the nondominated set either by assigning preference "values" to the sample solutions or by making pairwise comparisons in a fashion similar to that in the Analytic Hierarchy Process. With this information, a FFANN is trained to represent the decision maker's preference structure. Then, using the FFANN, an optimization problem is solved to search for improved solutions. An example is given to illustrate the Interactive FFANN Procedure. Also, the procedure is compared computationally with the Tchebycheff Method Steuer and Choo [Steuer, R. E., E.-U. Choo. 1983. An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Programming261 326-344.]. The computational results indicate that the Interactive FFANN Procedure produces good solutions and is robust with regard to the neural network architecture.

[1]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[2]  Ralph E. Steuer,et al.  A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming , 1997, Oper. Res..

[3]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[4]  Boaz Golany,et al.  Deriving weights from pairwise comparison matrices: The additive case , 1990 .

[5]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[6]  Egill Másson,et al.  Introduction to computation and learning in artificial neural networks , 1990 .

[7]  Michael S. Waterman,et al.  Introduction to computational biology , 1995 .

[8]  Ralph E. Steuer,et al.  Computational experience concerning payoff tables and minimum criterion values over the efficient set , 1988 .

[9]  Minghe Sun,et al.  Interactive multiple objective programming procedures via adaptive random search and feed-forward artificial neural networks , 1992 .

[10]  Ehl Emile Aarts,et al.  The classification capabilities of exact two-layered perceptrons , 1991 .

[11]  H. G. Daellenbach,et al.  A comparative evaluation of interactive solution methods for multiple objective decision models , 1987 .

[12]  Lori S. Franz,et al.  A simplified interactive multiple objective linear programming procedure , 1985, Comput. Oper. Res..

[13]  Pekka Korhonen,et al.  A pareto race , 1988 .

[14]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[15]  P. Farquhar State of the Art—Utility Assessment Methods , 1984 .

[16]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[17]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[18]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[19]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[20]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[21]  F. Lootsma,et al.  Pairwise-comparison methods in multiple objective programming, with applications in a long-term energy-planning model , 1985 .

[22]  J. Dyer Remarks on the analytic hierarchy process , 1990 .

[23]  R. L. Winkler Decision modeling and rational choice: AHP and utility theory , 1990 .

[24]  Jun Wang,et al.  A feedforward neural network for multiple criteria decision making , 1992, Comput. Oper. Res..

[25]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[26]  P. Korhonen The specification of a reference direction using the analytic hierarchy process , 1987 .

[27]  Lorraine R. Gardiner,et al.  Unified interactive multiple objective programming , 1994 .

[28]  Peter C. Fishburn,et al.  LEXICOGRAPHIC ORDERS, UTILITIES AND DECISION RULES: A SURVEY , 1974 .

[29]  William C. Wedley,et al.  A Rejoinder to Forman on AHP, with Emphasis on the Requirements of Composite Ratio Scales* , 1992 .

[30]  Fatemeh Zahedi,et al.  An Introduction to Neural Networks and a Comparison with Artificial Intelligence and Expert Systems , 1991 .

[31]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[32]  John J. Hopfield,et al.  Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit , 1986 .

[33]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[34]  L. WinklerRobert,et al.  Decision Modeling and Rational Choice , 1990 .

[35]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[36]  Jun Wang,et al.  Recurrent neural networks for linear programming: Analysis and design principles , 1992, Comput. Oper. Res..

[37]  J. Wallenius,et al.  Using qualitative data in multiple objective linear programming , 1990 .

[38]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  James P. Ignizio,et al.  Neural networks and operations research: An overview , 1992, Comput. Oper. Res..

[40]  Saul I. Gass A Process for Determining Priorities and Weights for Large-Scale Linear Goal Programmes , 1986 .

[41]  T. Saaty An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process” , 1990 .

[42]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[43]  Shmuel S. Oren,et al.  Priority-Based Interactive Multicriteria Optimization Algorithm , 1987 .

[44]  Peter C. Fishburn,et al.  Multiattribute Nonlinear Utility Theory , 1984 .

[45]  B. Malakooti,et al.  Feedforward artificial neural networks for solving discrete multiple criteria decision making problems , 1994 .