Random generation and enumeration of bipartite permutation graphs

Connected bipartite permutation graphs without vertex labels are investigated. First, the number of connected bipartite permutation graphs of n vertices is given. Based on the number, a simple algorithm that generates a connected bipartite permutation graph uniformly at random up to isomorphism is presented. Finally an enumeration algorithm of connected bipartite permutation graphs is proposed. The algorithm is based on reverse search, and it outputs each connected bipartite permutation graph in O(1) time.

[1]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[2]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming) , 2005 .

[3]  Ryuhei Uehara,et al.  Random Generation and Enumeration of Proper Interval Graphs , 2010 .

[4]  Charles J. Colbourn,et al.  On testing isomorphism of permutation graphs , 1981, Networks.

[5]  Yota Otachi,et al.  Random generation and enumeration of bipartite permutation graphs , 2009, J. Discrete Algorithms.

[6]  D. Knuth,et al.  Generating all trees : history of combinatorial generation , 2006 .

[7]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[8]  M. Golumbic Chapter 3 - Perfect graphs , 2004 .

[9]  Shin-Ichi Nakano,et al.  Efficient generation of plane trees , 2002, Inf. Process. Lett..

[10]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[11]  J. Ian Munro,et al.  Succinct Representation of Balanced Parentheses and Static Trees , 2002, SIAM J. Comput..

[12]  Shin-Ichi Nakano,et al.  A New Approach to Graph Recognition and Applications to Distance-Hereditary Graphs , 2007, Journal of Computer Science and Technology.

[13]  Naila Rahman,et al.  A simple optimal representation for balanced parentheses , 2006, Theor. Comput. Sci..

[14]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[15]  Kellogg S. Booth,et al.  A Linear Time Algorithm for Deciding Interval Graph Isomorphism , 1979, JACM.

[16]  Youngmee Koh,et al.  Connected permutation graphs , 2007, Discret. Math..

[17]  Ryuhei Uehara,et al.  Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs , 2005, Discret. Appl. Math..

[18]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[19]  Emeric Deutsch,et al.  A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..

[20]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[21]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[22]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[23]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[24]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[25]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[26]  Douglas B. West,et al.  A short proof that 'proper = unit' , 1998, Discret. Math..