Optimal state estimation over gaussian channels with noiseless feedback

This paper addresses an optimal state estimation problem in the presence of limited communication and noiseless feedback. In this setup, the state dynamics is estimated via an additive white Gaussian channel with input power constraint. We present a new communication and estimation strategy based on Kalman-Bucy filtering theory and water filling optimization algorithm. The optimality is established with respect to the minimal mean-square estimation error. As an example, we propose an analogue amplitude modulation scheme for state-estimation of a linear planar dynamics.

[1]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.

[2]  H. Robbins A Stochastic Approximation Method , 1951 .

[3]  Sandro Zampieri,et al.  Anytime reliable transmission of real-valued information through digital noisy channels , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[4]  Yuguang Fang,et al.  New estimates for solutions of Lyapunov equations , 1997, IEEE Trans. Autom. Control..

[5]  Munther A. Dahleh,et al.  Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information , 2005, IEEE Transactions on Automatic Control.

[6]  Thomas Kailath,et al.  A coding scheme for additive noise channels with feedback-I: No bandwidth constraint , 1966, IEEE Trans. Inf. Theory.

[7]  Richard H. Middleton,et al.  Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.

[8]  Shunsuke Ihara,et al.  Information theory - for continuous systems , 1993 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Young-Han Kim,et al.  Feedback Capacity of Stationary Gaussian Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[11]  W. T. Tucker Linear Estimation and Stochastic Control , 1984 .

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  Richard H. Middleton,et al.  Minimum Variance Control Over a Gaussian Communication Channel , 2008, IEEE Transactions on Automatic Control.

[14]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..

[15]  Prashant G. Mehta,et al.  Bode-Like Fundamental Performance Limitations in Control of Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[16]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[17]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[18]  E Johannesson,et al.  Encoder and decoder design for signal estimation , 2010, Proceedings of the 2010 American Control Conference.

[19]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[20]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[21]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[22]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[23]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[24]  Munther A. Dahleh,et al.  Feedback Control in the Presence of Noisy Channels: “Bode-Like” Fundamental Limitations of Performance , 2008, IEEE Transactions on Automatic Control.

[25]  Anders Rantzer,et al.  MIMO Encoder and Decoder Design for Signal Estimation , 2010 .