TMS of posterior parietal cortex disrupts visual tactile multisensory integration

Functional neuroimaging studies have implicated a number of brain regions, especially the posterior parietal cortex (PPC), as being potentially important for visual–tactile multisensory integration. However, neuroimaging studies are correlational and do not prove the necessity of a region for the behavioral improvements that are the hallmark of multisensory integration. To remedy this knowledge gap, we interrupted activity in the PPC, near the junction of the anterior intraparietal sulcus and the postcentral sulcus, using MRI‐guided transcranial magnetic stimulation (TMS) while subjects localized touches delivered to different fingers. As the touches were delivered, subjects viewed a congruent touch video, an incongruent touch video, or no video. Without TMS, a strong effect of multisensory integration was observed, with significantly better behavioral performance for discrimination of congruent multisensory touch than for unisensory touch alone. Incongruent multisensory touch produced a smaller improvement in behavioral performance. TMS of the PPC eliminated the behavioral advantage of both congruent and incongruent multisensory stimuli, reducing performance to unisensory levels. These results demonstrate a causal role for the PPC in visual–tactile multisensory integration. Taken together with converging evidence from other studies, these results support a model in which the PPC contains a map of space around the hand that receives input from both the visual and somatosensory modalities. Activity in this map is likely to be the neural substrate for visual–tactile multisensory integration.

[1]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[2]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[3]  A. King,et al.  Multisensory integration. , 1993, Science.

[4]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[5]  Terry M. Peters,et al.  Three-dimensional multimodal image-guidance for neurosurgery , 1996, IEEE Trans. Medical Imaging.

[6]  Scott T. Grafton,et al.  Feeling with the mind's eye , 1997, Neuroreport.

[7]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[8]  Elisabetta Làdavas,et al.  Seeing where your hands are , 1997, Nature.

[9]  M. Seyal,et al.  Suppression of spatial localization of a cutaneous stimulus following transcranial magnetic pulse stimulation of the sensorimotor cortex. , 1997, Electroencephalography and clinical neurophysiology.

[10]  A. Cowey,et al.  The role of the parietal cortex in visual attention—hemispheric asymmetries and the effects of learning: a magnetic stimulation study , 1998, Neuropsychologia.

[11]  Giuseppe di Pellegrino,et al.  Neuropsychological Evidence of an Integrated Visuotactile Representation of Peripersonal Space in Humans , 1998, Journal of Cognitive Neuroscience.

[12]  S. Tipper,et al.  Vision influences tactile perception without proprioceptive orienting , 1998, Neuroreport.

[13]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[14]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[15]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[16]  S S Hsiao,et al.  Detection of vibration transmitted through an object grasped in the hand. , 1999, Journal of neurophysiology.

[17]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[18]  E. Olivier,et al.  Event-related TMS over the right posterior parietal cortex induces ipsilateral visuo-spatial interference , 2001, Neuroreport.

[19]  T. Hendler,et al.  Visuo-haptic object-related activation in the ventral visual pathway , 2001, Nature Neuroscience.

[20]  P. Haggard,et al.  Noninformative vision improves the spatial resolution of touch in humans , 2001, Current Biology.

[21]  Matthew F. S. Rushworth,et al.  Attention systems and the organization of the human parietal cortex , 2001, NeuroImage.

[22]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[24]  John W. Lane,et al.  Representation of orientation in the somatosensory system , 2002, Behavioural Brain Research.

[25]  R. Romo,et al.  Neuronal correlates of decision-making in secondary somatosensory cortex , 2002, Nature Neuroscience.

[26]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[27]  Ravi S. Menon,et al.  Haptic study of three-dimensional objects activates extrastriate visual areas , 2002, Neuropsychologia.

[28]  C. Spence,et al.  Multisensory integration and the body schema: close to hand and within reach , 2003, Current Biology.

[29]  Norihiro Sadato,et al.  Tactile-visual cross-modal shape matching: a functional MRI study. , 2003, Brain research. Cognitive brain research.

[30]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[31]  L. Fogassi,et al.  A Touching Sight SII/PV Activation during the Observation and Experience of Touch , 2004, Neuron.

[32]  David C. Van Essen,et al.  Surface-based approaches to spatial localization and registration in primate cerebral cortex , 2004, NeuroImage.

[33]  D. V. van Essen,et al.  Surface-based approaches to spatial localization and registration in primate cerebral cortex. , 2004, NeuroImage.

[34]  P. Fox,et al.  Column‐based model of electric field excitation of cerebral cortex , 2004, Human brain mapping.

[35]  Jason B. Mattingley,et al.  Modality-Specific Control of Strategic Spatial Attention in Parietal Cortex , 2004, Neuron.

[36]  Tony Ro,et al.  Visual Enhancing of Tactile Perception in the Posterior Parietal Cortex , 2004, Journal of Cognitive Neuroscience.

[37]  Tracy R. Henderson,et al.  Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. , 2005, Journal of neurophysiology.

[38]  P. Haggard,et al.  Viewing the body prepares the brain for touch: effects of TMS over somatosensory cortex , 2005, The European journal of neuroscience.

[39]  Scott T. Grafton,et al.  Cortical topography of human anterior intraparietal cortex active during visually guided grasping. , 2005, Brain research. Cognitive brain research.

[40]  S-J Blakemore,et al.  Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. , 2005, Brain : a journal of neurology.

[41]  Hans-Jochen Heinze,et al.  Seeing the hand being touched modulates the primary somatosensory cortex , 2005, Neuroreport.

[42]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[43]  Tony Ro,et al.  Visually induced feelings of touch , 2006, Brain Research.

[44]  John J. Foxe,et al.  Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. , 2006, Journal of neurophysiology.

[45]  M. Rushworth,et al.  TMS in the parietal cortex: Updating representations for attention and action , 2006, Neuropsychologia.

[46]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[47]  C. Capaday,et al.  Intensity modulation of TMS‐induced cortical excitation: Primary motor cortex , 2006, Human brain mapping.

[48]  Kenneth F. Valyear,et al.  Human parietal cortex in action , 2006, Current Opinion in Neurobiology.

[49]  Nadia Bolognini,et al.  Proprioceptive Alignment of Visual and Somatosensory Maps in the Posterior Parietal Cortex , 2007, Current Biology.

[50]  Daniela Balslev,et al.  Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex , 2007, Journal of Neuroscience Methods.

[51]  Jody C. Culham,et al.  Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? , 2007, NeuroImage.

[52]  J. Duhamel,et al.  Multisensory Integration in the Ventral Intraparietal Area of the Macaque Monkey , 2007, The Journal of Neuroscience.

[53]  C. Spence,et al.  The selective effect of the image of a hand on visuotactile interactions as assessed by performance on the crossmodal congruency task , 2007, Experimental Brain Research.

[54]  Andrea Serino,et al.  Dynamic Size-Change of Peri-Hand Space Following Tool-Use: Determinants and Spatial Characteristics Revealed Through Cross-Modal Extinction , 2007, Cortex.

[55]  Ehud Zohary,et al.  Is That Near My Hand? Multisensory Representation of Peripersonal Space in Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[56]  Tony Ro,et al.  Human MST But Not MT Responds to Tactile Stimulation , 2007, The Journal of Neuroscience.

[57]  Brian N. Pasley,et al.  Transcranial Magnetic Stimulation Elicits Coupled Neural and Hemodynamic Consequences , 2007, Science.

[58]  L. Merabet,et al.  Visual Phosphene Perception Modulated by Subthreshold Crossmodal Sensory Stimulation , 2007, The Journal of Neuroscience.

[59]  P. Haggard,et al.  Viewing the body modulates tactile receptive fields , 2007, Experimental Brain Research.

[60]  Manabu Honda,et al.  Tactile–visual integration in the posterior parietal cortex: A functional magnetic resonance imaging study , 2008, Brain Research Bulletin.

[61]  Sidney S. Simon,et al.  Merging of the Senses , 2008, Front. Neurosci..

[62]  Michael S. Beauchamp,et al.  Touch, sound and vision in human superior temporal sulcus , 2008, NeuroImage.

[63]  John J. Foxe,et al.  Crossmodal binding through neural coherence: implications for multisensory processing , 2008, Trends in Neurosciences.

[64]  F. Gosselin,et al.  Audio-visual integration of emotion expression , 2008, Brain Research.

[65]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[66]  Simona Monaco,et al.  Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. , 2008, Cerebral cortex.

[67]  John J. Foxe,et al.  Changes in effective connectivity of human superior parietal lobule under multisensory and unisensory stimulation , 2008, The European journal of neuroscience.

[68]  Céline R. Gillebert,et al.  Parcellation of parietal cortex: Convergence between lesion-symptom mapping and mapping of the intact functioning brain , 2009, Behavioural Brain Research.

[69]  Brian N. Pasley,et al.  State-Dependent Variability of Neuronal Responses to Transcranial Magnetic Stimulation of the Visual Cortex , 2009, Neuron.

[70]  Noriaki Kanayama,et al.  The role of gamma band oscillations and synchrony on rubber hand illusion and crossmodal integration , 2009, Brain and Cognition.

[71]  Jonathan D. Nelson,et al.  Multiple Parietal Reach Regions in Humans: Cortical Representations for Visual and Proprioceptive Feedback during On-Line Reaching , 2009, The Journal of Neuroscience.

[72]  Michael S Beauchamp,et al.  Distributed Representation of Single Touches in Somatosensory and Visual Cortex , 2009, NeuroImage.

[73]  Robert Oostenveld,et al.  Tactile stimulation accelerates behavioral responses to visual stimuli through enhancement of occipital gamma-band activity , 2009, Vision Research.

[74]  Juha Silvanto,et al.  TMS-adaptation reveals abstract letter selectivity in the left posterior parietal cortex. , 2009, Cerebral cortex.