Iteration of quasiregular tangent functions in three dimensions

We define a new quasiregular mapping $ T:\mathbb{R}^3\to \mathbb{R}^3 \cup \{\infty \}$ that generalizes the tangent function on the complex plane and shares a number of its geometric properties. We investigate the dynamics of the family $ \{\lambda T:\lambda >0\}$, establishing results analogous to those of Devaney and Keen for the meromorphic family $ \{z\mapsto \lambda \tan z:\lambda >0\}$, although the methods used are necessarily original.

[1]  W. Bergweiler,et al.  Fatou–Julia theory for non-uniformly quasiregular maps , 2011, Ergodic Theory and Dynamical Systems.

[2]  Daniel A. Nicks,et al.  Wandering domains in quasiregular dynamics , 2011, 1101.1483.

[3]  Daniel A. Nicks,et al.  Julia sets of uniformly quasiregular mappings are uniformly perfect , 2010, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  P. Rippon,et al.  Fast escaping points of entire functions , 2010, 1009.5081.

[5]  A. Eremenko,et al.  Dynamics of a higher dimensional analog of the trigonometric functions , 2010, 1002.4159.

[6]  Daniel A. Nicks,et al.  Quasiregular dynamics on the n-sphere , 2009, Ergodic Theory and Dynamical Systems.

[7]  W. Bergweiler,et al.  The escaping set of a quasiregular mapping , 2008, 0802.0119.

[8]  D. Schleicher,et al.  Dynamic rays of bounded-type entire functions , 2007, 0704.3213.

[9]  W. Bergweiler,et al.  Dynamics of meromorphic functions with direct or logarithmic singularities , 2007, 0704.2712.

[10]  H. Siebert Fixed points and normal families of quasiregular mappings , 2006 .

[11]  Lasse Rempe Rigidity of escaping dynamics for transcendental entire functions , 2006, math/0605058.

[12]  P. Rippon,et al.  On questions of Fatou and Eremenko , 2004 .

[13]  A. Hinkkanen,et al.  Local dynamics of uniformly quasiregular mappings , 2004 .

[14]  P. Koskela GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs) By TADEUSZ IWANIEC and GAVEN MARTIN: 552 pp., £75.00, ISBN 0-19-85029-4 (Oxford University Press, 2001) , 2002 .

[15]  V. Mayer Quasiregular analogues of critically finite rational functions with parabolic orbifold , 1998 .

[16]  V. Mayer Uniformly quasiregular mappings of Lattès type , 1997 .

[17]  D. Drasin On a method of Holopainen and Rickman , 1997 .

[18]  L. Keen,et al.  Dynamics of the family lambda tan z , 1995, math/9507225.

[19]  V. Zorič A THEOREM OF M. A. LAVRENT'EV ON QUASICONFORMAL SPACE MAPS , 1967 .

[20]  W. Bergweiler,et al.  Iteration of Quasiregular Mappings , 2011 .

[21]  G. Lawler,et al.  Fatou-Julia Theory for non-uniformly quasiregular maps , 2011 .

[22]  Tadeusz Iwaniec,et al.  Geometric Function Theory and Non-linear Analysis , 2002 .

[23]  P. Domínguez DYNAMICS OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS , 1998 .

[24]  L. Keen,et al.  DYNAMICS OF THE FAMILY λ tan z , 1997 .

[25]  R. Devaney,et al.  Dynamics of meromorphic maps : maps with polynomial schwarzian derivative , 1989 .

[26]  Alexandre Eremenko,et al.  On the iteration of entire functions , 1989 .