Characterization of CH4-CO2-O2 diffusion flames near autothermal reforming condition

[1]  H. Im,et al.  Effects of Radiation Model on Soot Modeling in Laminar Coflow Diffusion Flames at Elevated Pressure , 2023, Combustion Science and Technology.

[2]  H. Im,et al.  Effect of pressure and CO2 dilution on soot formation in laminar inverse coflow flame at conditions close to autothermal reforming , 2023, Combustion and Flame.

[3]  S. M. Sarathy,et al.  Assessment of physical soot inception model in normal and inverse laminar diffusion flames , 2022, Combustion and Flame.

[4]  Fengshan Liu,et al.  Soot production in high pressure inverse diffusion flames with enriched oxygen in the oxidizer stream , 2022, Combustion and Flame.

[5]  H. Im,et al.  The effects of CO2/CH4 ratio on soot formation for autothermal reforming of methane at elevated pressure , 2022, Combustion and Flame.

[6]  K. Anaya,et al.  Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions , 2022, Energy Conversion and Management.

[7]  A. Farooq,et al.  Rapid soot inception via α-alkynyl substitution of polycyclic aromatic hydrocarbons , 2021, Fuel.

[8]  A. Masri,et al.  Soot formation in laminar flames of ethylene/ammonia , 2020, Combustion and Flame.

[9]  Hong S. He,et al.  Role of dimethyl ether in incipient soot formation in premixed ethylene flames , 2020 .

[10]  M. Frenklach,et al.  On the mechanism of soot nucleation. , 2020, Physical chemistry chemical physics : PCCP.

[11]  A. Parente,et al.  Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane , 2020, Combustion and Flame.

[12]  S. M. Sarathy,et al.  Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition , 2019, Combustion and Flame.

[13]  Zuo-hua Huang,et al.  An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements , 2018, Combustion and Flame.

[14]  M. Head‐Gordon,et al.  Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth , 2018, Science.

[15]  C. Sung,et al.  Soot formation in counterflow non-premixed ethylene flames at elevated pressures , 2018, Combustion and Flame.

[16]  Temperature. , 2018, Nursing times.

[17]  S. Pratsinis,et al.  Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. , 2018, Physical chemistry chemical physics : PCCP.

[18]  Zhen Huang,et al.  The Diagnostics of Laser-Induced Fluorescence (LIF) Spectra of PAHs in Flame with TD-DFT: Special Focus on Five-Membered Ring. , 2015, The journal of physical chemistry. A.

[19]  H. Pitsch,et al.  A consistent chemical mechanism for oxidation of substituted aromatic species , 2010 .

[20]  Heinz Pitsch,et al.  Hybrid Method of Moments for modeling soot formation and growth , 2009 .

[21]  H. Pitsch,et al.  Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors , 2009 .

[22]  A. Carlos Fernandez-Pello,et al.  Structure of laminar sooting inverse diffusion flames , 2007 .

[23]  C. Law,et al.  An Experimental Study of Ignition in Nonpremixed Counterflowing Hydrogen versus Heated Air , 1995 .

[24]  W. Roberts,et al.  The growth of PAHs and soot in the post-flame region , 2019, Proceedings of the Combustion Institute.