How antibiotics kill bacteria: from targets to networks

[1]  Xilin Zhao,et al.  Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. , 2010, The Journal of antimicrobial chemotherapy.

[2]  M. DePristo,et al.  Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. , 2010, Molecular cell.

[3]  G. Walker,et al.  Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. , 2009, Molecular cell.

[4]  R. Kishony,et al.  Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions , 2009, Cell.

[5]  J. Collins,et al.  Role of reactive oxygen species in antibiotic action and resistance. , 2009, Current opinion in microbiology.

[6]  S. Singleton,et al.  Inhibitors of RecA Activity Discovered by High-Throughput Screening: Cell-Permeable Small Molecules Attenuate the SOS Response in Escherichia coli , 2009, Journal of biomolecular screening.

[7]  E. Nudler,et al.  Endogenous Nitric Oxide Protects Bacteria Against a Wide Spectrum of Antibiotics , 2009, Science.

[8]  T. Bernhardt,et al.  LytM-Domain Factors Are Required for Daughter Cell Separation and Rapid Ampicillin-Induced Lysis in Escherichia coli , 2009, Journal of bacteriology.

[9]  Roy Kishony,et al.  Drug interactions and the evolution of antibiotic resistance , 2009, Nature Reviews Microbiology.

[10]  G. Cambray,et al.  The SOS Response Controls Integron Recombination , 2009, Science.

[11]  Timothy K Lu,et al.  Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy , 2009, Proceedings of the National Academy of Sciences.

[12]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[13]  D. Dwyer,et al.  Networking Opportunities for Bacteria , 2008, Cell.

[14]  Ilana Kolodkin-Gal,et al.  The Communication Factor EDF and the Toxin–Antitoxin Module mazEF Determine the Mode of Action of Antibiotics , 2008, PLoS biology.

[15]  J. Collins,et al.  Mistranslation of Membrane Proteins and Two-Component System Activation Trigger Antibiotic-Mediated Cell Death , 2008, Cell.

[16]  R. Hancock,et al.  Novel Genetic Determinants of Low-Level Aminoglycoside Resistance in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[17]  Robert E. W. Hancock,et al.  Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility , 2008, Antimicrobial Agents and Chemotherapy.

[18]  Zaida Luthey-Schulten,et al.  Molecular signatures of ribosomal evolution , 2008, Proceedings of the National Academy of Sciences.

[19]  Gary Taubes,et al.  The Bacteria Fight Back , 2008, Science.

[20]  Jeffrey H. Miller,et al.  Determination of Antibiotic Hypersensitivity among 4,000 Single-Gene-Knockout Mutants of Escherichia coli , 2008, Journal of bacteriology.

[21]  James T. Park,et al.  How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan) , 2008, Microbiology and Molecular Biology Reviews.

[22]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[23]  R. Jayaswal,et al.  Transcriptional Profiling Reveals that Daptomycin Induces the Staphylococcus aureus Cell Wall Stress Stimulon and Genes Responsive to Membrane Depolarization , 2007, Antimicrobial Agents and Chemotherapy.

[24]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[25]  K. Bayles The biological role of death and lysis in biofilm development , 2007, Nature Reviews Microbiology.

[26]  Xilin Zhao,et al.  Quinolone-Mediated Bacterial Death , 2007, Antimicrobial Agents and Chemotherapy.

[27]  James J. Collins,et al.  Dispersing biofilms with engineered enzymatic bacteriophage , 2007, Proceedings of the National Academy of Sciences.

[28]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[29]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[30]  J. Vila Faculty Opinions recommendation of Inhibition of mutation and combating the evolution of antibiotic resistance. , 2006 .

[31]  R. Kishony,et al.  Functional classification of drugs by properties of their pairwise interactions , 2006, Nature Genetics.

[32]  Michelle D. Brazas,et al.  Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. , 2005, Drug discovery today.

[33]  J. Beckwith,et al.  Diverse Paths to Midcell: Assembly of the Bacterial Cell Division Machinery , 2005, Current Biology.

[34]  T. Silhavy,et al.  Sensing external stress: watchdogs of the Escherichia coli cell envelope. , 2005, Current opinion in microbiology.

[35]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[36]  H. Floss,et al.  Rifamycin-mode of action, resistance, and biosynthesis. , 2005, Chemical reviews.

[37]  G. Ashley,et al.  Translation and protein synthesis: macrolides. , 2005, Chemical reviews.

[38]  T. Mukhtar,et al.  Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. , 2005, Chemical reviews.

[39]  K. Young,et al.  FtsZ Collaborates with Penicillin Binding Proteins To Generate Bacterial Cell Shape in Escherichia coli , 2004, Journal of bacteriology.

[40]  T. Raivio Faculty Opinions recommendation of SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. , 2004 .

[41]  Stanley N Cohen,et al.  SOS Response Induction by ß-Lactams and Bacterial Defense Against Antibiotic Lethality , 2004, Science.

[42]  D. Georgellis,et al.  Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Pratt,et al.  The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic beta-lactams. , 2004, Journal of the American Chemical Society.

[44]  O. Espéli,et al.  Untangling intracellular DNA topology , 2004, Molecular microbiology.

[45]  Xueqiao Liu,et al.  Probing the ArcA-P Modulon of Escherichia coli by Whole Genome Transcriptional Analysis and Sequence Recognition Profiling* , 2004, Journal of Biological Chemistry.

[46]  J. Imlay,et al.  Pathways of oxidative damage. , 2003, Annual review of microbiology.

[47]  J. Courcelle,et al.  RecA-dependent recovery of arrested DNA replication forks. , 2003, Annual review of genetics.

[48]  Clement S. Chu,et al.  A New Class of Bacterial RNA Polymerase Inhibitor Affects Nucleotide Addition , 2003, Science.

[49]  Måns Ehrenberg,et al.  The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. , 2003, Journal of molecular biology.

[50]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[51]  S. Mobashery,et al.  Versatility of Aminoglycosides and Prospects for Their Future , 2003, Clinical Microbiology Reviews.

[52]  B. Firek,et al.  The Staphylococcus aureus cidAB Operon: Evaluation of Its Role in Regulation of Murein Hydrolase Activity and Penicillin Tolerance , 2003, Journal of bacteriology.

[53]  C. Walsh Antibiotics: Actions, Origins, Resistance , 2003 .

[54]  H. Schwarz,et al.  Effects of Multiple Deletions of Murein Hydrolases on Viability, Septum Cleavage, and Sensitivity to Large Toxic Molecules in Escherichia coli , 2002, Journal of bacteriology.

[55]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Heddle,et al.  Quinolone-Binding Pocket of DNA Gyrase: Role of GyrB , 2002, Antimicrobial Agents and Chemotherapy.

[57]  F. Hobbs,et al.  Oxazolidinones Mechanism of Action: Inhibition of the First Peptide Bond Formation* , 2001, The Journal of Biological Chemistry.

[58]  A. Drlica-Wagner,et al.  Enhancement of Fluoroquinolone Activity by C-8 Halogen and Methoxy Moieties: Action against a Gyrase Resistance Mutant of Mycobacterium smegmatis and a Gyrase-Topoisomerase IV Double Mutant of Staphylococcus aureus , 2001, Antimicrobial Agents and Chemotherapy.

[59]  E. Rubinstein History of Quinolones and Their Side Effects , 2001, Chemotherapy.

[60]  T. Silhavy,et al.  Genetic Basis for Activity Differences Between Vancomycin and Glycolipid Derivatives of Vancomycin , 2001, Science.

[61]  Marilyn Roberts,et al.  Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance , 2001, Microbiology and Molecular Biology Reviews.

[62]  K. Severinov,et al.  The β′ Subunit of Escherichia coli RNA Polymerase Is Not Required for Interaction with Initiating Nucleotide but Is Necessary for Interaction with Rifampicin* , 2001, The Journal of Biological Chemistry.

[63]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[64]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[65]  T. Nyström,et al.  Protein oxidation in response to increased transcriptional or translational errors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Kenneth W. Bayles,et al.  The Staphylococcus aureus lrgAB Operon Modulates Murein Hydrolase Activity and Penicillin Tolerance , 2000, Journal of bacteriology.

[67]  J. Hoch,et al.  Two-component and phosphorelay signal transduction. , 2000, Current opinion in microbiology.

[68]  Roger A. Garrett,et al.  The Ribosome, Structure, Function, Antibiotics, and Cellular Interactions , 2000 .

[69]  F. Fang,et al.  Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. , 2000, Science.

[70]  Myron F. Goodman,et al.  The importance of repairing stalled replication forks , 2000, Nature.

[71]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[72]  D. Williams,et al.  Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. , 1999, Chemistry & biology.

[73]  S. Normark,et al.  Emergence of vancomycin tolerance in Streptococcus pneumoniae , 1999, Nature.

[74]  Zhong Chen,et al.  Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. , 1999, Science.

[75]  A. Maxwell,et al.  The DNA Gyrase-Quinolone Complex , 1998, The Journal of Biological Chemistry.

[76]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[77]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[78]  Anthony Maxwell,et al.  Crystal structure of the breakage–reunion domain of DNA gyrase , 1997, Nature.

[79]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[80]  E. Brunskill,et al.  Identification of LytSR-regulated genes from Staphylococcus aureus , 1996, Journal of bacteriology.

[81]  R. Muñoz,et al.  ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype , 1996, Antimicrobial agents and chemotherapy.

[82]  A. Maxwell,et al.  DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. , 1996, Biochemistry.

[83]  M. Snyder,et al.  DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. , 1996, Journal of molecular biology.

[84]  M. Ehrenberg,et al.  Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. , 1994, European journal of biochemistry.

[85]  W. M. Huang,et al.  Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone‐resistant isolates , 1994, Molecular microbiology.

[86]  J. Smith,et al.  Function of the SOS Process in Repair of DNA Damage Induced by Modern 4‐Quinolones , 1993, The Journal of pharmacy and pharmacology.

[87]  E. Bi,et al.  Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring , 1993, Journal of bacteriology.

[88]  S. Vincent,et al.  Lytic effect of two fluoroquinolones, ofloxacin and pefloxacin, on Escherichia coli W7 and its consequences on peptidoglycan composition , 1991, Antimicrobial Agents and Chemotherapy.

[89]  S. Nakamura,et al.  Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli , 1990, Antimicrobial Agents and Chemotherapy.

[90]  A. Tomasz,et al.  Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms , 1990, Antimicrobial Agents and Chemotherapy.

[91]  J. Smith,et al.  4-quinolones and the SOS response. , 1989, Journal of medical microbiology.

[92]  B. D. Davis Mechanism of bactericidal action of aminoglycosides , 1987, Microbiological reviews.

[93]  B. D. Davis,et al.  Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[94]  H. Taber,et al.  Streptomycin accumulation by Bacillus subtilis requires both a membrane potential and cytochrome aa3 , 1986, Antimicrobial Agents and Chemotherapy.

[95]  W. Wehrli,et al.  Rifampin: mechanisms of action and resistance. , 1983, Reviews of infectious diseases.

[96]  P. Sensi History of the development of rifampin. , 1983, Reviews of infectious diseases.

[97]  L. Bryan,et al.  Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin , 1983, Antimicrobial Agents and Chemotherapy.

[98]  D. Otto,et al.  Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes , 1982, Antimicrobial Agents and Chemotherapy.

[99]  R. Hancock Aminoglycoside uptake and mode of action-with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. , 1981, The Journal of antimicrobial chemotherapy.

[100]  R. Hancock Aminoglycoside uptake and mode of action--with special reference to streptomycin and gentamicin. I. Antagonists and mutants. , 1981, The Journal of antimicrobial chemotherapy.

[101]  J. Strominger,et al.  Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[102]  A. Tomasz,et al.  Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics , 1979, Antimicrobial Agents and Chemotherapy.

[103]  J. Rahal,et al.  Bactericidal and Bacteriostatic Action of Chloramphenicol Against Meningeal Pathogens , 1979, Antimicrobial Agents and Chemotherapy.

[104]  M. Snyder,et al.  DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. , 1979, Journal of molecular biology.

[105]  L. E. Bryan,et al.  Mechanism of Aminoglycoside Antibiotic Resistance in Anaerobic Bacteria: Clostridium perfringens and Bacteroides fragilis , 1979, Antimicrobial Agents and Chemotherapy.

[106]  C. Cech,et al.  On the mechanism of rifampicin inhibition of RNA synthesis. , 1978, The Journal of biological chemistry.

[107]  K. Drlica,et al.  Superhelical Escherichia coli DNA: relaxation by coumermycin. , 1978, Journal of molecular biology.

[108]  M. Gellert,et al.  Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[109]  N. Cozzarelli,et al.  Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[110]  M. Gellert,et al.  DNA gyrase: an enzyme that introduces superhelical turns into DNA. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[111]  B. Spratt Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[112]  G. Hobby,et al.  The action of rifampin alone and in combination with other antituberculous drugs. , 1970, The American review of respiratory disease.

[113]  A. Tomasz,et al.  Multiple Antibiotic Resistance in a Bacterium with Suppressed Autolytic System , 1970, Nature.

[114]  B. Weisblum,et al.  Antibiotic Inhibitors of the Bacterial Ribosome , 1968, Bacteriological reviews.

[115]  K. Honikel,et al.  The specific inhibition of the DNA-directed RNA synthesis by rifamycin. , 1967, Biochimica et biophysica acta.

[116]  D J Tipper,et al.  Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[117]  J. Davies,et al.  Misreading of RNA codewords induced by aminoglycoside antibiotics. , 1965, Molecular pharmacology.

[118]  E. M. Wise,et al.  Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[119]  P. Isaacson,et al.  STREPTOMYCIN ACTION AND ANAEROBIOSIS. , 1965, Journal of general microbiology.

[120]  W. Goss,et al.  Mechanism of Action of Nalidixic Acid on Escherichia coli II. Inhibition of Deoxyribonucleic Acid Synthesis , 1965, Journal of bacteriology.

[121]  W. Goss,et al.  MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI , 1964, Journal of bacteriology.

[122]  R. Hancock Uptake of 14C-streptomycin by some microorganisms and its relation to their streptomycin sensitivity. , 1962, Journal of general microbiology.

[123]  B. D. Davis,et al.  Synergism between Streptomycin and Penicillin: A Proposed Mechanism , 1962, Science.

[124]  B. D. Davis,et al.  Effect of Streptomycin on Escherichia Coli: Uptake of Streptomycin by Escherichia coli , 1960, Nature.

[125]  B. D. Davis,et al.  Effect of Streptomycin on Escherichia Coli: Damage by Streptomycin to the Cell Membrane of Escherichia coli , 1960, Nature.

[126]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .

[127]  P. Vannuffel,et al.  Mechanism of Action of Streptogramins and Macrolides , 2012, Drugs.

[128]  B. Stockwell,et al.  Multicomponent therapeutics for networked systems , 2005, Nature Reviews Drug Discovery.

[129]  John W. Beaber,et al.  SOS response promotes horizontal dissemination of antibiotic resistance genes , 2004, Nature.

[130]  J. Imlay How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. , 2002, Advances in microbial physiology.

[131]  Robert E W Hancock,et al.  Role of membranes in the activities of antimicrobial cationic peptides. , 2002, FEMS microbiology letters.

[132]  W. Burman,et al.  Comparative Pharmacokinetics and Pharmacodynamics of the Rifamycin Antibacterials , 2001, Clinical pharmacokinetics.

[133]  E. Charpentier,et al.  Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. , 2000, Molecular cell.

[134]  H. Hiasa,et al.  Mechanism of Quinolone Action A DRUG-INDUCED STRUCTURAL PERTURBATION OF THE DNA PRECEDES STRAND CLEAVAGE BY TOPOISOMERASE IV* , 1997 .

[135]  S. Donadio,et al.  Macrolides. , 1995, Biotechnology.

[136]  C. Walsh,et al.  Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. , 1992, Natural product reports.

[137]  H. C. Neu Quinolone antimicrobial agents. , 1992, Annual review of medicine.

[138]  J. Smith,et al.  Protein- and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. , 1991, Journal of medical microbiology.

[139]  R. Young,et al.  RNA polymerase II. , 1991, Annual review of biochemistry.

[140]  F. Goldstein,et al.  Bacteriostatic and bactericidal activity of azithromycin against Haemophilus influenzae. , 1990, The Journal of antimicrobial chemotherapy.

[141]  R. G. Eagon,et al.  The effect of mafenide on dihydropteroate synthase. , 1990, The Journal of antimicrobial chemotherapy.

[142]  Y. Kono Oxygen Enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamycin SV to rifamycin S catalyzed by manganous ions: the role of superoxide. , 1982, Journal of biochemistry.

[143]  A. Tomasz,et al.  The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. , 1979, Annual review of microbiology.

[144]  M. Scrutton Divalent metal ion catalysis of the oxidation of rifamycin SV to refamycin S , 1977, FEBS letters.

[145]  M. Chamberlin,et al.  Preface/Front Matter , 1976 .

[146]  G. Porven,et al.  [RIFOMYCIN. (A NEW ANTIBIOTIC)]. , 1963, Archivos argentinos de tisiologia y neumonologia.

[147]  B. D. Davis,et al.  Damage by streptomycin to the cell membrane of Escherichia coli. , 1960, Nature.

[148]  B. D. Davis,et al.  Uptake of streptomycin by Escherichia coli. , 1960, Nature.

[149]  P. Margalith,et al.  Rifomycin, a new antibiotic; preliminary report. , 1959, Il Farmaco; edizione scientifica.

[150]  E. Brunskill,et al.  Identification and Molecular Characterization of a Putative Regulatory Locus That Affects Autolysis in Staphylococcus aureus , 2022 .