On Variational Methods for Fluid Flow Estimation
暂无分享,去创建一个
[1] Timo Kohlberger,et al. Parallel Variational Motion Estimation by Domain Decomposition and Cluster Computing , 2004, ECCV.
[2] Laurent D. Cohen,et al. Auxiliary variables and two-step iterative algorithms in computer vision problems , 2004, Journal of Mathematical Imaging and Vision.
[3] Joachim Weickert,et al. Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.
[4] Christoph Schnörr,et al. Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.
[5] Joachim Weickert,et al. A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.
[6] C. Schnörr. Convex variational segmentation of multi-channel images , 1996 .
[7] Markus Raffel,et al. Particle Image Velocimetry: A Practical Guide , 2002 .
[8] Christoph Schnörr,et al. Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.
[9] Dmitry Chetverikov. Applying Feature Tracking to Particle Image Velocimetry , 2003, Int. J. Pattern Recognit. Artif. Intell..
[10] Jing Yuan,et al. Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation , 2005, Scale-Space.
[11] Edmond C. Prakash,et al. E-R modeling and visualization of large mutual fund data , 2002 .
[12] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[13] F. Scarano. Iterative image deformation methods in PIV , 2002 .
[14] Eero P. Simoncelli. Distributed representation and analysis of visual motion , 1993 .
[15] J. Craggs. Applied Mathematical Sciences , 1973 .
[16] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[17] Peter Deuflhard,et al. A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning , 2000 .
[18] I. Mabuchi,et al. Flow around a finite circular cylinder on a flat plate , 1984 .
[19] Hans-Hellmut Nagel,et al. On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..
[20] L. Lourenço. Particle Image Velocimetry , 1989 .
[21] Pierre Moulin,et al. Multiscale motion estimation for scalable video coding , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.
[22] S. Monismith,et al. A hybrid digital particle tracking velocimetry technique , 1997 .
[23] David J. Fleet,et al. Performance of optical flow techniques , 1994, International Journal of Computer Vision.
[24] M. Shashkov,et al. Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .
[25] M. Shashkov,et al. The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .
[26] Richard D. Keane,et al. Super-resolution particle imaging velocimetry , 1995 .
[27] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[28] Christoph Schnörr. On Functionals with Greyvalue-Controlled Smoothness Terms for Determining Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[29] Timo Kohlberger,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .
[30] Shigeru Nishio,et al. Evaluation of the 3D-PIV standard images (PIV-STD project) , 2000 .
[31] Jiří Matas,et al. Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.
[32] Berthold K. P. Horn,et al. Determining Optical Flow , 1981, Other Conferences.
[33] Y. Hassan,et al. Full-field bubbly flow velocity measurements using a multiframe particle tracking technique , 1991 .
[34] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[35] G. M. Quenot. The 'orthogonal algorithm' for optical flow detection using dynamic programming , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[36] G. Quénot,et al. Particle image velocimetry with optical flow , 1998 .
[37] Shigeru Nishio,et al. Standard images for particle-image velocimetry , 2000 .
[38] M. Shashkov,et al. Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .
[39] A. Prasad. Particle image velocimetry , 2000 .
[40] Christoph Schnörr,et al. A variational approach for particle tracking velocimetry , 2005 .
[41] Kazuo Ohmi,et al. Particle-tracking velocimetry with new algorithms , 2000 .
[42] Lewis D. Griffin,et al. Scale Space Methods in Computer Vision , 2003, Lecture Notes in Computer Science.
[43] Timo Kohlberger,et al. Variational Dense Motion Estimation Using the Helmholtz Decomposition , 2003, Scale-Space.
[44] Timo Kohlberger,et al. Variational optical flow estimation for particle image velocimetry , 2005 .