On Variational Methods for Fluid Flow Estimation

We present global variational approaches that are capable of extracting high-resolution velocity vector fields from image sequences of fluids. Starting points are existing variational approaches from image processing that we adapt to the requiremements of particle image sequences, paying particular attention to a multiscale representation of the image data. Additionally, we combine a discrete non-differentiable particle matching term with a continuous regularization term and thus achieve a variational particle tracking approach. As higher-order regularization can be used to preserve important flow structures, we finally sketch a motion estimation scheme based on the decomposition of motion vector fields into components of orthogonal subspaces.

[1]  Timo Kohlberger,et al.  Parallel Variational Motion Estimation by Domain Decomposition and Cluster Computing , 2004, ECCV.

[2]  Laurent D. Cohen,et al.  Auxiliary variables and two-step iterative algorithms in computer vision problems , 2004, Journal of Mathematical Imaging and Vision.

[3]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[4]  Christoph Schnörr,et al.  Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.

[5]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[6]  C. Schnörr Convex variational segmentation of multi-channel images , 1996 .

[7]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[8]  Christoph Schnörr,et al.  Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.

[9]  Dmitry Chetverikov Applying Feature Tracking to Particle Image Velocimetry , 2003, Int. J. Pattern Recognit. Artif. Intell..

[10]  Jing Yuan,et al.  Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation , 2005, Scale-Space.

[11]  Edmond C. Prakash,et al.  E-R modeling and visualization of large mutual fund data , 2002 .

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  F. Scarano Iterative image deformation methods in PIV , 2002 .

[14]  Eero P. Simoncelli Distributed representation and analysis of visual motion , 1993 .

[15]  J. Craggs Applied Mathematical Sciences , 1973 .

[16]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[17]  Peter Deuflhard,et al.  A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning , 2000 .

[18]  I. Mabuchi,et al.  Flow around a finite circular cylinder on a flat plate , 1984 .

[19]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[20]  L. Lourenço Particle Image Velocimetry , 1989 .

[21]  Pierre Moulin,et al.  Multiscale motion estimation for scalable video coding , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[22]  S. Monismith,et al.  A hybrid digital particle tracking velocimetry technique , 1997 .

[23]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[24]  M. Shashkov,et al.  Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .

[25]  M. Shashkov,et al.  The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .

[26]  Richard D. Keane,et al.  Super-resolution particle imaging velocimetry , 1995 .

[27]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[28]  Christoph Schnörr On Functionals with Greyvalue-Controlled Smoothness Terms for Determining Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[30]  Shigeru Nishio,et al.  Evaluation of the 3D-PIV standard images (PIV-STD project) , 2000 .

[31]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[32]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[33]  Y. Hassan,et al.  Full-field bubbly flow velocity measurements using a multiframe particle tracking technique , 1991 .

[34]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[35]  G. M. Quenot The 'orthogonal algorithm' for optical flow detection using dynamic programming , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  G. Quénot,et al.  Particle image velocimetry with optical flow , 1998 .

[37]  Shigeru Nishio,et al.  Standard images for particle-image velocimetry , 2000 .

[38]  M. Shashkov,et al.  Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .

[39]  A. Prasad Particle image velocimetry , 2000 .

[40]  Christoph Schnörr,et al.  A variational approach for particle tracking velocimetry , 2005 .

[41]  Kazuo Ohmi,et al.  Particle-tracking velocimetry with new algorithms , 2000 .

[42]  Lewis D. Griffin,et al.  Scale Space Methods in Computer Vision , 2003, Lecture Notes in Computer Science.

[43]  Timo Kohlberger,et al.  Variational Dense Motion Estimation Using the Helmholtz Decomposition , 2003, Scale-Space.

[44]  Timo Kohlberger,et al.  Variational optical flow estimation for particle image velocimetry , 2005 .