Approximately Lower Triangular Ensembles of LDPC Codes With Linear Encoding Complexity

The complexity of brute-force encoding of low-density parity-check (LDPC) codes is proportional to the square value of the block length. Richardson and Urbanke have proposed efficient encoding algorithms for LDPC codes. These algorithms permute the parity-check matrix of the code iteratively, such that it becomes approximately lower triangular. We propose a new approach for efficient encoding of LDPC codes in which we modify the code ensemble to force an approximate lower triangular structure, thus eliminating the need to apply the algorithms of Richardson and Urbanke in this ensemble. We prove that the new ensemble has the same asymptotic threshold as the corresponding standard ensemble. The new ensemble can be used for linear time encoding of an arbitrary code profile. Computer simulations confirm that the performances of the standard and new ensembles are also very similar when using finite length codes

[1]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[2]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[3]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[4]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[5]  Alex J. Grant,et al.  Iterative encoding of low-density parity-check codes , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[6]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[7]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[8]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[9]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[10]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[11]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[12]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[13]  Li Ping,et al.  Low density parity check codes with semi-random parity check matrix , 1999 .

[14]  David Burshtein,et al.  Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.

[15]  Daniel A. Spielman Linear-time encodable and decodable error-correcting codes , 1996, IEEE Trans. Inf. Theory.

[16]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[17]  Jose M. F. Moura,et al.  Efficient encoding of cycle codes: a graphical approach , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[18]  David J. C. MacKay,et al.  Comparison of constructions of irregular Gallager codes , 1999, IEEE Trans. Commun..