The role of space-based observation in understanding and responding to active tectonics and earthquakes

The quantity and quality of satellite-geodetic measurements of tectonic deformation have increased dramatically over the past two decades improving our ability to observe active tectonic processes. We now routinely respond to earthquakes using satellites, mapping surface ruptures and estimating the distribution of slip on faults at depth for most continental earthquakes. Studies directly link earthquakes to their causative faults allowing us to calculate how resulting changes in crustal stress can influence future seismic hazard. This revolution in space-based observation is driving advances in models that can explain the time-dependent surface deformation and the long-term evolution of fault zones and tectonic landscapes.

[1]  J. Elliott,et al.  Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 Mw 7.6 earthquake , 2011 .

[2]  W. Thatcher How the Continents Deform: The Evidence From Tectonic Geodesy* , 2009 .

[3]  M. Tatar,et al.  The 2013 Mw 6.2 Khaki‐Shonbe (Iran) Earthquake: Insights into seismic and aseismic shortening of the Zagros sedimentary cover , 2015 .

[4]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[5]  Edwin Nissen,et al.  Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet , 2016 .

[6]  J. Elliott,et al.  Mapping 3D fault geometry in earthquakes using high‐resolution topography: Examples from the 2010 El Mayor‐Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes , 2016 .

[7]  Heresh Fattahi,et al.  InSAR uncertainty due to orbital errors , 2014 .

[8]  Timothy E. Dawson,et al.  Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model , 2013 .

[9]  Tim J. Wright,et al.  Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere , 2013 .

[10]  B. Meade,et al.  Inference of Multiple Earthquake‐Cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation , 2013 .

[11]  Peter Molnar,et al.  Earthquake recurrence intervals and plate tectonics , 1979 .

[12]  Gregory C. Beroza,et al.  Slow Earthquakes and Nonvolcanic Tremor , 2011 .

[13]  F. Pollitz Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake , 2005 .

[14]  Tim J. Wright,et al.  Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling , 2007 .

[15]  Tim J. Wright,et al.  InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays , 2008 .

[16]  J. Elliott,et al.  Seismotectonics and rupture process of the MW 7.1 2011 Van reverse-faulting earthquake, eastern Turkey, and implications for hazard in regions of distributed shortening , 2016 .

[17]  Paul Segall,et al.  Earthquake and Volcano Deformation , 2010 .

[18]  R. Anderson,et al.  Tectonic Geomorphology: Burbank/Tectonic Geomorphology , 2011 .

[19]  Y. Klinger,et al.  Characteristic slip for five great earthquakes along the Fuyun fault in China , 2011 .

[20]  T. Wright,et al.  Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska , 2007 .

[21]  R. Gold,et al.  On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for geologic slip rate measurements , 2015 .

[22]  Kristine M. Larson,et al.  GPS seismology , 2009 .

[23]  J. C. Savage Viscoelastic‐coupling model for the earthquake cycle driven from below , 2000 .

[24]  Paul A. Rosen,et al.  Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation , 2005 .

[25]  J. C. Savage Equivalent strike‐slip earthquake cycles in half‐space and lithosphere‐asthenosphere earth models , 1990 .

[26]  T. Wright,et al.  Satellite geodetic imaging reveals internal deformation of western Tibet , 2012 .

[27]  J. Avouac,et al.  Measuring earthquakes from optical satellite images. , 2000, Applied optics.

[28]  Robert J. Geller,et al.  Bad Assumptions or Bad Luck: Why Earthquake Hazard Maps Need Objective Testing , 2011 .

[29]  A. S. Belward,et al.  Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites , 2015 .

[30]  Gavan Lintern,et al.  The role of cognitive systems engineering in the systems engineering design process , 2010, Syst. Eng..

[31]  T. Wright,et al.  Weak ductile shear zone beneath a major strike‐slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone , 2014 .

[32]  J. Avouac,et al.  Under the Hood of the Earthquake Machine: Toward Predictive Modeling of the Seismic Cycle , 2012, Science.

[33]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[34]  Paul Lundgren,et al.  On the Synergistic Use of SAR Constellations’ Data Exploitation for Earth Science and Natural Hazard Response , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  R. Bürgmann,et al.  Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake , 2006 .

[36]  T. Wright,et al.  Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block‐like behavior of Eastern Anatolia , 2014 .

[37]  M. Métois,et al.  Three‐dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across‐ and along‐track Sentinel‐1 TOPS interferometry , 2016 .

[38]  B. E. Shaw,et al.  Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model , 2014 .

[39]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[40]  James Jackson,et al.  The 2009 L'Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard , 2009 .

[41]  F. Pollitz,et al.  Coseismic slip distribution of the 1923 Kanto earthquake, Japan , 2005 .

[42]  T. Wright,et al.  Toward mapping surface deformation in three dimensions using InSAR , 2004 .

[43]  Kenneth W. Hudnut,et al.  The 2014 Mw 6.1 South Napa Earthquake: A Unilateral Rupture with Shallow Asperity and Rapid Afterslip , 2015 .

[44]  J. C. Savage,et al.  Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California, Earthquake , 1990 .

[45]  G. Blewitt,et al.  Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities , 2011 .

[46]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[47]  Marie-Pierre Doin,et al.  Long-term growth of the Himalaya inferred from interseismic InSAR measurement , 2012 .

[48]  Sergey V. Samsonov,et al.  A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters , 2009 .

[49]  Yngvar Larsen,et al.  Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake , 2016 .

[50]  Zhenhong Li,et al.  Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere‐corrected InSAR , 2013 .

[51]  Yuri Fialko,et al.  Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system , 2006, Nature.

[52]  D. Agnew,et al.  The complete (3‐D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake, California, from space geodetic observations , 2001 .

[53]  D. Sandwell,et al.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate‐and‐state friction properties , 2013 .

[54]  David T. Sandwell,et al.  High‐resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR , 2013 .

[55]  T. Wright,et al.  InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet , 2004, Science.

[56]  J. Bequignon,et al.  The International Charter “Space and Major Disasters” initiative , 2004 .

[57]  J. C. Savage,et al.  Geodetic determination of relative plate motion in central California , 1973 .

[58]  Olaf Zielke,et al.  Fault slip and earthquake recurrence along strike-slip faults - Contributions of high-resolution geomorphic data , 2015 .

[59]  S. Jónsson,et al.  Block‐like plate movements in eastern Anatolia observed by InSAR , 2014 .

[60]  Paul Segall,et al.  Post-earthquake ground movements correlated to pore-pressure transients , 2003, Nature.

[61]  Jean Taboury,et al.  Measuring near field coseismic displacements from SAR images: Application to the Landers Earthquake , 1999 .

[62]  Semih Ergintav,et al.  InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation , 2014 .

[63]  Harry Fielding Reid,et al.  The California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission ... , 2010 .

[64]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[65]  Georg Dresen,et al.  Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations , 2008 .

[66]  Basil Tikoff,et al.  Aseismic slip and fault‐normal strain along the central creeping section of the San Andreas fault , 2008 .

[67]  Eric J. Fielding,et al.  Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake , 2015 .

[68]  Masanobu Shimada,et al.  Line‐of‐sight displacement from ALOS‐2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock , 2015 .

[69]  J. Avouac,et al.  The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault , 2014 .

[70]  Takeo Tadono,et al.  PRECISE GLOBAL DEM GENERATION BY ALOS PRISM , 2014 .

[71]  Christian Bignami,et al.  X-, C-, and L-Band DInSAR Investigation of the April 6, 2009, Abruzzi Earthquake , 2011, IEEE Geoscience and Remote Sensing Letters.

[72]  Peter Molnar,et al.  Slip-line field theory and large-scale continental tectonics , 1976, Nature.

[73]  James Jackson,et al.  Slip in the 2010–2011 Canterbury earthquakes, New Zealand , 2012 .

[74]  Gravitational potential energy and active deformation in the Apennines , 2014 .

[75]  John R. Elliott,et al.  Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor‐Cucapah epicentral area , 2014 .

[76]  P. Segall,et al.  A decadal‐scale deformation transient prior to the 2011 Mw 9.0 Tohoku‐oki earthquake , 2014 .

[77]  T. Wright,et al.  Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry , 2001 .

[78]  Y. Kagan,et al.  Implications of Geodetic Strain Rate for Future Earthquakes, with a Five-Year Forecast of M5 Earthquakes in Southern California , 2007 .

[79]  John R. Rice,et al.  Crustal Earthquake Instability in Relation to the Depth Variation of Frictional Slip Properties , 1986 .

[80]  J. Elliott,et al.  The 2013 Balochistan earthquake: An extraordinary or completely ordinary event? , 2015 .

[81]  J. C. Savage,et al.  Asthenosphere readjustment and the earthquake cycle , 1978 .

[82]  Marie-Pierre Doin,et al.  Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data , 2011 .

[83]  Robert J. Geller,et al.  Why earthquake hazard maps often fail and what to do about it , 2012 .

[84]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[85]  B. Hager,et al.  Postseismic and interseismic displacements near a strike‐slip fault: A two‐dimensional theory for general linear viscoelastic rheologies , 2005 .

[86]  Yngvar Larsen,et al.  Rupture and afterslip of the 2014 South Napa earthquake reveal spatial variations in fault friction related to lithology , 2016 .

[87]  Shanan E. Peters,et al.  From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle , 2015 .

[88]  Robert M. Nadeau,et al.  Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults , 2015 .

[89]  P. England,et al.  A thin viscous sheet model for continental deformation , 1982 .

[90]  Eric J. Fielding,et al.  Coseismic and Postseismic Slip of the 2004 Parkfield Earthquake from Space-Geodetic Data , 2006 .

[91]  Tim J. Wright,et al.  A spatially variable power law tropospheric correction technique for InSAR data , 2015 .

[92]  Mark Simons,et al.  Importance of ocean tidal load corrections for differential InSAR , 2008 .

[93]  Alberto Moreira,et al.  Coregistration of interferometric SAR images using spectral diversity , 2000, IEEE Trans. Geosci. Remote. Sens..

[94]  H. Zebker,et al.  Measuring two‐dimensional movements using a single InSAR pair , 2006 .

[95]  C. Kreemer,et al.  GEAR1: A Global Earthquake Activity Rate Model Constructed from Geodetic Strain Rates and Smoothed Seismicity , 2015 .

[96]  Masahiro Chigira,et al.  Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China , 2010 .

[97]  C. Kreemer,et al.  Erratum to Revised Tectonic Forecast of Global Shallow Seismicity Based on Version 2.1 of the Global Strain Rate Map , 2015 .

[98]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[99]  J. Avouac,et al.  Deformation during the 1975-1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery , 2012 .

[100]  Tom Parsons,et al.  Significance of stress transfer in time‐dependent earthquake probability calculations , 2004 .

[101]  Göran Ekström,et al.  Global seismicity of 2003: centroid–moment-tensor solutions for 1087 earthquakes , 2005 .

[102]  Kenneth W. Hudnut,et al.  Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites , 2015 .

[103]  B. Parsons,et al.  Scaling of viscous shear zones with depth-dependent viscosity and power-law stress–strain-rate dependence , 2014 .

[104]  J. Borrero,et al.  Field Data and Satellite Imagery of Tsunami Effects in Banda Aceh , 2005, Science.

[105]  B. Parsons,et al.  The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults , 1998, Nature.

[106]  Jessica R. Murray,et al.  Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by global positioning system, electronic distance meter, creepmeters, and borehole strainmeters , 2006 .

[107]  Sergey V. Samsonov,et al.  InSAR imaging of displacement on flexural‐slip faults triggered by the 2013 Mw 6.6 Lake Grassmere earthquake, central New Zealand , 2015 .

[108]  Thomas H. Jordan,et al.  Geodetic measurement of tectonic deformation in the Santa Maria Fold and Thrust Belt, California , 1990 .

[109]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[110]  T. Wright,et al.  Earthquake monitoring gets boost from a new satellite , 2015 .

[111]  Kazuya Kaku,et al.  Space-based response to the 2011 Great East Japan Earthquake: Lessons learnt from JAXA's support using earth observation satellites , 2015 .

[112]  Geoffrey Blewitt,et al.  A geodetic plate motion and Global Strain Rate Model , 2014 .

[113]  Marie-Pierre Doin,et al.  Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties , 2013 .

[114]  Fred F. Pollitz,et al.  Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake , 1998 .

[115]  Paul Lundgren,et al.  Joint Inversion of InSAR, GPS, Teleseismic, and Strong-Motion Data for the Spatial and Temporal Distribution of Earthquake Slip: Application to the 1999 İzmit Mainshock , 2002 .

[116]  Kaye M. Shedlock,et al.  The GSHAP Global Seismic Hazard Map , 1999 .

[117]  P. England,et al.  Seismic strain rates in regions of distributed continental deformation , 1989 .

[118]  Teng Wang,et al.  Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake , 2015 .

[119]  G. King,et al.  STATIC STRESS CHANGES AND THE TRIGGERING OF EARTHQUAKES , 1994 .

[120]  Sang-Hoon Hong,et al.  Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake , 2010 .

[121]  E. Lindsey,et al.  Interseismic Strain Localization in the San Jacinto Fault Zone , 2014, Pure and Applied Geophysics.

[122]  Daniel Carrizo,et al.  Andean structural control on interseismic coupling in the North Chile subduction zone , 2013 .

[123]  J. Avouac,et al.  Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake , 2016 .

[124]  Tim J. Wright,et al.  Interseismic strain accumulation across the North Anatolian Fault from Envisat InSAR measurements , 2011 .

[125]  J. Milne The California Earthquake of April 18, 1906 , 1910, Nature.

[126]  Kenneth W. Hudnut,et al.  Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico , 2011 .

[127]  A. Mahmood,et al.  The International Charter ‘Space and Major Disasters’ , 2015 .

[128]  Zhen Liu,et al.  Seismic Hazard Inferred from Tectonics: California , 2005 .

[129]  Yuri Fialko,et al.  Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults , 2012 .

[130]  James Jackson,et al.  Uncharted seismic risk , 2011 .

[131]  Martin Sweeting,et al.  First results from the disaster monitoring constellation (DMC) A. da Silva Curiel, L. Boland, J. Cooksley, M. Bekhti, P. Stephens, , 2005 .