Persistent growth of CO2 emissions and implications for reaching climate targets

[1]  Kenichi Wada,et al.  A short note on integrated assessment modeling approaches: Rejoinder to the review of "Making or breaking climate targets - The AMPERE study on staged accession scenarios for climate policy" , 2015 .

[2]  D. Vuuren,et al.  Mid- and long-term climate projections for fragmented and delayed-action scenarios , 2015 .

[3]  D. McCollum,et al.  Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants , 2015 .

[4]  Kenichi Wada,et al.  Technological Forecasting & Social Change Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals , 2014 .

[5]  Philippe Ciais,et al.  Sharing a quota on cumulative carbon emissions , 2014 .

[6]  R. Pierrehumbert Short-Lived Climate Pollution , 2014 .

[7]  Keywan Riahi,et al.  Air-pollution emission ranges consistent with the representative concentration pathways , 2014 .

[8]  John P. Weyant,et al.  The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies , 2014, Climatic Change.

[9]  D. Higdon,et al.  A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission , 2014 .

[10]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[11]  T. Stocker,et al.  Impact of delay in reducing carbon dioxide emissions , 2014 .

[12]  K. Calvin,et al.  Implications of weak near-term climate policies on long-term mitigation pathways , 2015, Climatic Change.

[13]  K. Caldeira,et al.  Natural climate variability and future climate policy , 2013 .

[14]  M. Allen,et al.  The role of short-lived climate pollutants in meeting temperature goals , 2013 .

[15]  Keywan Riahi,et al.  WHAT DOES THE 2 C TARGET IMPLY FOR A GLOBAL CLIMATE AGREEMENT IN 2020? THE LIMITS STUDY ON DURBAN PLATFORM SCENARIOS , 2013 .

[16]  C. Tebaldi,et al.  Delayed detection of climate mitigation benefits due to climate inertia and variability , 2013, Proceedings of the National Academy of Sciences.

[17]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[18]  Elmar Kriegler,et al.  Economic mitigation challenges: how further delay closes the door for achieving climate targets , 2013 .

[19]  Corinne Le Quéré,et al.  Anthropogenic CO2 emissions , 2013 .

[20]  A. Stavert,et al.  Reply to 'Anthropogenic CO 2 emissions' , 2013 .

[21]  Robert Joseph Andres,et al.  Atmospheric verification of anthropogenic CO2 emission trends , 2013 .

[22]  Massimo Tavoni,et al.  Modeling meets science and technology: an introduction to a special issue on negative emissions , 2013, Climatic Change.

[23]  Brian C. O'Neill,et al.  2020 emissions levels required to limit warming to below 2 °C , 2013 .

[24]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[25]  A. Navarra,et al.  Adjustment of the natural ocean carbon cycle to negative emission rates , 2013, Climatic Change.

[26]  G. Luderer,et al.  Is atmospheric carbon dioxide removal a game changer for climate change mitigation? , 2013, Climatic Change.

[27]  M. Raupach The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings , 2013 .

[28]  T. Stocker,et al.  The Closing Door of Climate Targets , 2013, Science.

[29]  D. McCollum,et al.  Probabilistic cost estimates for climate change mitigation , 2013, Nature.

[30]  Corinne Le Quéré,et al.  The challenge to keep global warming below 2 °C , 2013 .

[31]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[32]  C. Deser,et al.  Communication of the role of natural variability in future North American climate , 2012 .

[33]  S. Solomon,et al.  Cumulative carbon as a policy framework for achieving climate stabilization , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Global Energy Assessment Writing Team Global Energy Assessment: Toward a Sustainable Future , 2012 .

[35]  Ian G. Enting,et al.  Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics:a multi-model analysis , 2012 .

[36]  M. Allen,et al.  Equivalence of greenhouse-gas emissions for peak temperature limits , 2012 .

[37]  O. Boucher,et al.  Reversibility in an Earth System model in response to CO2 concentration changes , 2012 .

[38]  P. Ciais,et al.  Archived Version from Ncdocks Institutional Repository a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion Title: a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion , 2022 .

[39]  Malte Meinshausen,et al.  Copenhagen Accord Pledges imply higher costs for staying below 2°C warming , 2012, Climatic Change.

[40]  J. Rogelj,et al.  National GHG emissions reduction pledges and 2°C: comparison of studies , 2012 .

[41]  N. Gillett,et al.  Is the climate response to CO2 emissions path dependent? , 2012 .

[42]  E. Stehfest,et al.  RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C , 2011 .

[43]  C. Weber,et al.  Growth in emission transfers via international trade from 1990 to 2008 , 2011, Proceedings of the National Academy of Sciences.

[44]  Keywan Riahi,et al.  The relationship between short-term emissions and long-term concentration targets , 2011 .

[45]  Alice Bows,et al.  Beyond ‘dangerous’ climate change: emission scenarios for a new world , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  J. Canadell,et al.  The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system , 2011 .

[47]  Corinne Le Quéré,et al.  Rapid growth in CO2 emissions after the 2008-2009 global financial crisis , 2011 .

[48]  Philippe Ciais,et al.  Update on CO2 emissions , 2010 .

[49]  Ken Caldeira,et al.  Atmospheric carbon dioxide removal: long-term consequences and commitment , 2010 .

[50]  K. Lindgren,et al.  The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS) , 2010 .

[51]  S. Davis,et al.  Consumption-based accounting of CO2 emissions , 2010, Proceedings of the National Academy of Sciences.

[52]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[53]  J. Gregory,et al.  Quantifying Carbon Cycle Feedbacks , 2009 .

[54]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[55]  Simon Buckle,et al.  Mitigation of climate change , 2009, The Daunting Climate Change.

[56]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[57]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[58]  A. Weaver,et al.  Setting cumulative emissions targets to reduce the risk of dangerous climate change , 2008, Proceedings of the National Academy of Sciences.

[59]  Reto Knutti,et al.  The equilibrium sensitivity of the Earth's temperature to radiation changes , 2008 .

[60]  J. M. Reilly,et al.  Temperature increase of 21st century mitigation scenarios , 2008, Proceedings of the National Academy of Sciences.

[61]  K. Anderson,et al.  From long-term targets to cumulative emission pathways: Reframing UK climate policy , 2008 .

[62]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[63]  Ken Caldeira,et al.  Stabilizing climate requires near‐zero emissions , 2008 .

[64]  J. Canadell,et al.  Global and regional drivers of accelerating CO2 emissions , 2007, Proceedings of the National Academy of Sciences.

[65]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[66]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[67]  Kristian Lindgren,et al.  Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere , 2006 .

[68]  Ken Caldeira,et al.  Insensitivity of global warming potentials to carbon dioxide emission scenarios , 1993, Nature.

[69]  K. Hasselmann,et al.  Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model , 1987 .

[70]  Judith Gurney BP Statistical Review of World Energy , 1985 .