Odd symplectic groups
暂无分享,去创建一个
[1] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[2] I. Gel'fand,et al. Models of representations of classical groups and their hidden symmetries , 1984 .
[3] F. L. Bauer. Zur Theorie der Spingruppen , 1954 .
[4] G. B. Mathews,et al. Combinatory Analysis. Vol. II , 1915, The Mathematical Gazette.
[5] I. G. MacDonald,et al. Affine root systems and Dedekind'sη-function , 1971 .
[6] R. King,et al. Reduced determinantal forms for characters of the classical Lie groups , 1979 .
[7] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[8] V. T. Filippov. n-Lie algebras , 1985 .
[9] E. Cartan. Les groupes de transformations continus, infinis, simples , 1909 .
[10] Robert Hermann,et al. Sophus Lie's 1884 differential invariant paper , 1975 .
[11] R. King,et al. Dimensions of irreducible representations of the classical Lie groups , 1979 .
[12] H. Weyl. The Classical Groups , 1939 .
[13] Nicolas Bourbaki,et al. Groupes et algèbres de Lie , 1971 .
[14] Richard P. Stanley,et al. Symmetries of plane partitions , 1986, J. Comb. Theory A.
[15] THE CLASSICAL GROUPS. SPECTRAL ANALYSIS OF THEIR FINITE-DIMENSIONAL REPRESENTATIONS , 1962 .
[16] Itaru Terada,et al. Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn , 1987 .
[17] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[18] I. M. Singer,et al. The infinite groups of Lie and Cartan Part I, (The transitive groups) , 1965 .
[19] Ronald C. King,et al. Standard Young tableaux and weight multiplicities of the classical Lie groups , 1983 .
[20] Richard P. Stanley,et al. Some combinatorial aspects of the Schubert calculus , 1977 .