Odd symplectic groups

On definit des groupes symplectiques sur des espaces vectoriels de dimension impaire. Ces groupes de Lie ne sont ni simples ni reductifs. On obtient une formule de caracteres pour certaines representations tensorielles de ces groupes

[1]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[2]  I. Gel'fand,et al.  Models of representations of classical groups and their hidden symmetries , 1984 .

[3]  F. L. Bauer Zur Theorie der Spingruppen , 1954 .

[4]  G. B. Mathews,et al.  Combinatory Analysis. Vol. II , 1915, The Mathematical Gazette.

[5]  I. G. MacDonald,et al.  Affine root systems and Dedekind'sη-function , 1971 .

[6]  R. King,et al.  Reduced determinantal forms for characters of the classical Lie groups , 1979 .

[7]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[8]  V. T. Filippov n-Lie algebras , 1985 .

[9]  E. Cartan Les groupes de transformations continus, infinis, simples , 1909 .

[10]  Robert Hermann,et al.  Sophus Lie's 1884 differential invariant paper , 1975 .

[11]  R. King,et al.  Dimensions of irreducible representations of the classical Lie groups , 1979 .

[12]  H. Weyl The Classical Groups , 1939 .

[13]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[14]  Richard P. Stanley,et al.  Symmetries of plane partitions , 1986, J. Comb. Theory A.

[15]  THE CLASSICAL GROUPS. SPECTRAL ANALYSIS OF THEIR FINITE-DIMENSIONAL REPRESENTATIONS , 1962 .

[16]  Itaru Terada,et al.  Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn , 1987 .

[17]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[18]  I. M. Singer,et al.  The infinite groups of Lie and Cartan Part I, (The transitive groups) , 1965 .

[19]  Ronald C. King,et al.  Standard Young tableaux and weight multiplicities of the classical Lie groups , 1983 .

[20]  Richard P. Stanley,et al.  Some combinatorial aspects of the Schubert calculus , 1977 .