Controllable Non-Markovianity for a Spin Qubit in Diamond.

We present a flexible scheme to realize non-Markovian dynamics of an electronic spin qubit, using a nitrogen-vacancy center in diamond where the inherent nitrogen spin serves as a regulator of the dynamics. By changing the population of the nitrogen spin, we show that we can smoothly tune the non-Markovianity of the electron spin's dynamics. Furthermore, we examine the decoherence dynamics induced by the spin bath to exclude other sources of non-Markovianity. The amount of collected measurement data is kept at a minimum by employing Bayesian data analysis. This allows for a precise quantification of the parameters involved in the description of the dynamics and a prediction of so far unobserved data points.

[1]  S. Olivares,et al.  Continuous-variable quantum key distribution in non-Markovian channels , 2010, 1011.0304.

[2]  Mauro Paternostro,et al.  Linear Optics Simulation of Quantum Non-Markovian Dynamics , 2012, Scientific Reports.

[3]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[4]  Jared H. Cole,et al.  Analytic solutions to the central spin problem for Nitrogen Vacancy centres in diamond , 2013, 1309.5921.

[5]  Guang-Can Guo,et al.  Measuring non-Markovianity of processes with controllable system-environment interaction , 2011, 1109.2438.

[6]  Jyrki Piilo,et al.  Nonlocal memory effects allow perfect teleportation with mixed states , 2012, Scientific Reports.

[7]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[8]  M. Paris,et al.  Programmable entanglement oscillations in a non-Markovian channel , 2010, 1009.3228.

[9]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[10]  H. J. Mclaughlin,et al.  Learn , 2002 .

[11]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[12]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[13]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[14]  J. Kruschke Doing Bayesian Data Analysis , 2010 .

[15]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[16]  J. Ankerhold,et al.  Optimal control of open quantum systems: cooperative effects of driving and dissipation. , 2010, Physical review letters.

[17]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[18]  Guang-Can Guo,et al.  Non-Markovianity-assisted high-fidelity Deutsch–Jozsa algorithm in diamond , 2018, 1801.07381.

[19]  Elsi-Mari Laine,et al.  Markovianity and non-Markovianity in quantum and classical systems , 2011, 1106.0138.

[20]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[21]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[22]  Heinz-Peter Breuer,et al.  Measurement of quantum memory effects and its fundamental limitations , 2018 .

[23]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[24]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[25]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[26]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[27]  F. Illuminati,et al.  Exact non-Markovian dynamics of Gaussian quantum channels: Finite-time and asymptotic regimes , 2018, Physical Review A.

[28]  Andrea Smirne,et al.  Fundamental limits to frequency estimation: a comprehensive microscopic perspective , 2017, 1710.04673.

[29]  Andrea Smirne,et al.  Ultimate Precision Limits for Noisy Frequency Estimation. , 2015, Physical review letters.

[30]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[31]  D. Chruściński,et al.  Degree of non-Markovianity of quantum evolution. , 2013, Physical review letters.

[32]  J. Wrachtrup,et al.  Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy c , 2009, 0909.2783.

[33]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[34]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[35]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[36]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[37]  J Wrachtrup,et al.  Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. , 2008, Physical review letters.

[38]  Matteo A. C. Rossi,et al.  All-optical quantum simulator of qubit noisy channels , 2016, 1612.06742.

[39]  S. Huelga,et al.  Non-Markovianity-assisted steady state entanglement. , 2011, Physical review letters.

[40]  Guang-Can Guo,et al.  Photonic realization of nonlocal memory effects and non-Markovian quantum probes , 2012, Scientific Reports.

[41]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[42]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[43]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[44]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2017 .

[45]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[46]  Hao-Sheng Zeng,et al.  Equivalence of the measures of non-Markovianity for open two-level systems , 2011, 1104.0070.

[47]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[48]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[49]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[50]  Javier Prior,et al.  The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes , 2013, Nature Physics.

[51]  M. Markham,et al.  Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.

[52]  Sanjib Sharma,et al.  Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy , 2017, 1706.01629.

[53]  S. Maniscalco,et al.  Comparative study of non-Markovianity measures in exactly solvable one- and two-qubit models , 2014, 1402.4975.

[54]  H. Carmichael An open systems approach to quantum optics , 1993 .

[55]  Vincent Jacques,et al.  Free induction decay of single spins in diamond , 2012, 1206.4575.

[56]  Fabio Sciarrino,et al.  All-optical non-Markovian stroboscopic quantum simulator , 2014, 1411.6959.

[57]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[58]  F. Illuminati,et al.  Non-Markovianity of Gaussian Channels. , 2015, Physical review letters.

[59]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.