A functional renormalization group equation for foliated spacetimes
暂无分享,去创建一个
[1] Frank Saueressig,et al. Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.
[2] A. Görlich,et al. CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.
[3] Frank Saueressig,et al. On the Renormalization Group Flow of Gravity , 2007, 0712.0445.
[4] Jan M. Pawlowski,et al. The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows , 2012, 1203.4207.
[5] Howard Georgi,et al. Effective Field Theory , 1993 .
[6] S. Paycha,et al. Geometric and Topological Methods for Quantum Field Theory , 2007 .
[7] Jan M. Pawlowski,et al. Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.
[8] S. Adler. Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory , 1982 .
[9] Daniel F. Litim,et al. Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[11] F. Mazzitelli,et al. Counterterms in semiclassical Hořava-Lifshitz gravity , 2010, 1006.2870.
[12] D. Litim,et al. Fixed points of quantum gravity in higher dimensions , 2006, hep-th/0606135.
[13] Petr Hořava. Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.
[14] Frank Saueressig,et al. Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.
[15] M. Reuter,et al. Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .
[16] J. Jurkiewicz,et al. Geometry of the quantum universe , 2010, 1001.4581.
[17] Fluid Membranes and 2d Quantum Gravity , 2011, 1103.1089.
[18] D. Litim. Optimisation of the exact renormalisation group , 2000, hep-th/0005245.
[19] F. Saueressig,et al. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .
[20] Patrick R. Zulkowski,et al. Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.
[21] M. Reuter,et al. Fractal spacetime structure in asymptotically safe gravity , 2005 .
[22] Stefan Floerchinger,et al. Analytic continuation of functional renormalization group equations , 2011, 1112.4374.
[23] Roberto Percacci,et al. The running gravitational couplings , 1998 .
[24] Frank Saueressig,et al. Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.
[25] M. Grisaru,et al. Background-field method versus normal field theory in explicit examples: One-loop divergences in the S matrix and Green's functions for Yang--Mills and gravitational fields , 1975 .
[26] C. Ross. Found , 1869, The Dental register.
[27] M. Visser. Status of Hořava gravity: A personal perspective , 2011, 1103.5587.
[28] Adriano Contillo,et al. Renormalization group flow of Hořava-Lifshitz gravity at low energies , 2013 .
[29] L. F. Abbott,et al. The Background Field Method Beyond One Loop , 1981 .
[30] Copenhagen,et al. Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.
[31] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[32] M.Reuter,et al. Renormalization group flow of the Holst action , 2010, 1012.4280.
[33] Petr Hořava. General covariance in gravity at a Lifshitz point , 2011, 1101.1081.
[34] Frank Saueressig,et al. Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.
[35] J. Jurkiewicz,et al. Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.
[36] C. Teitelboim. Quantum mechanics of the gravitational field , 1982 .
[37] Matt Visser,et al. Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. , 2011, Physical review letters.
[38] A validation of causal dynamical triangulations , 2011, 1110.6875.
[39] M. Reuter,et al. Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .
[40] Frank Saueressig,et al. Quantum Einstein gravity , 2012, 1202.2274.
[41] R. Loll,et al. A Proper time cure for the conformal sickness in quantum gravity , 2001, hep-th/0103186.
[42] Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.
[43] C. Teitelboim. Proper-time gauge in the quantum theory of gravitation , 1983 .
[44] S. Weinberg. Effective Field Theory, Past and Future , 2009, 0908.1964.
[45] B. Dewitt. QUANTUM THEORY OF GRAVITY. II. THE MANIFESTLY COVARIANT THEORY. , 1967 .
[46] O. Zanusso,et al. The renormalization of fluctuating branes, the Galileon and asymptotic safety , 2012, 1212.4073.
[47] Frank Saueressig,et al. Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.
[48] D. Orlando,et al. The renormalizability of Hořava–Lifshitz-type gravities , 2009, 0905.0301.
[49] J. York. Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial‐value problem of general relativity , 1973 .
[50] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[51] Astrid Eichhorn,et al. Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.
[52] D. Litim,et al. Non-perturbative thermal flows and resummations , 2006, hep-th/0609122.
[53] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[54] Christoph Rahmede,et al. ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.
[55] J. Jurkiewicz,et al. Nonperturbative quantum gravity , 2012, 1203.3591.
[56] Joe Henson,et al. Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.
[57] R. Percacci. A Short introduction to asymptotic safety , 2011, 1110.6389.
[58] D. Kazakov,et al. Invariant renormalization for theories with nonlinear symmetry , 1977 .
[59] Stanley Deser,et al. Dynamical Structure and Definition of Energy in General Relativity , 1959 .
[60] D. Orlando,et al. On the perturbative expansion around a Lifshitz point , 2009, 0908.4429.
[61] Martin Reuter,et al. Bare action and regularized functional integral of asymptotically safe quantum gravity , 2008, 0811.3888.
[62] H. Gies,et al. Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.
[63] Petr Hořava. Membranes at Quantum Criticality , 2008, 0812.4287.
[64] Steven Weinberg,et al. What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.
[65] Frank Saueressig,et al. Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.
[66] M. Henneaux,et al. A dynamical inconsistency of Horava gravity , 2009, 0912.0399.
[67] Martin Reuter,et al. Nonperturbative evolution equation for quantum gravity , 1998 .
[68] F. Briscese,et al. On the True Nature of Renormalizability in Horava-Lifshitz Gravity , 2012, 1205.1722.
[69] E. Martinec,et al. Gravity from the extension of spatial diffeomorphisms , 2010, 1002.4449.
[70] Frank Saueressig,et al. Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.
[71] S. Nagy,et al. Lectures on renormalization and asymptotic safety , 2012, 1211.4151.
[72] M. Reuter,et al. Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .
[73] Frank Saueressig,et al. The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.
[74] Frank Saueressig,et al. The universal RG machine , 2010, 1012.3081.