A functional renormalization group equation for foliated spacetimes

A bstractWe derive an exact functional renormalization group equation for the projectable version of Hořava-Lifshitz gravity. The flow equation encodes the gravitational degrees of freedom in terms of the lapse function, shift vector and spatial metric and is manifestly invariant under background foliation-preserving diffeomorphisms. Its relation to similar flow equations for gravity in the metric formalism is discussed in detail, and we argue that the space of action functionals, invariant under the full diffeomorphism group, forms a subspace of the latter invariant under renormalization group transformations. As a first application we study the RG flow of the Newton constant and the cosmological constant in the ADM formalism. In particular we show that the non-Gaussian fixed point found in the metric formulation is qualitatively unaffected by the change of variables and persists also for Lorentzian signature metrics.

[1]  Frank Saueressig,et al.  Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.

[2]  A. Görlich,et al.  CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.

[3]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[4]  Jan M. Pawlowski,et al.  The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows , 2012, 1203.4207.

[5]  Howard Georgi,et al.  Effective Field Theory , 1993 .

[6]  S. Paycha,et al.  Geometric and Topological Methods for Quantum Field Theory , 2007 .

[7]  Jan M. Pawlowski,et al.  Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.

[8]  S. Adler Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory , 1982 .

[9]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[11]  F. Mazzitelli,et al.  Counterterms in semiclassical Hořava-Lifshitz gravity , 2010, 1006.2870.

[12]  D. Litim,et al.  Fixed points of quantum gravity in higher dimensions , 2006, hep-th/0606135.

[13]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[14]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[15]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[16]  J. Jurkiewicz,et al.  Geometry of the quantum universe , 2010, 1001.4581.

[17]  Fluid Membranes and 2d Quantum Gravity , 2011, 1103.1089.

[18]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[19]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[20]  Patrick R. Zulkowski,et al.  Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.

[21]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[22]  Stefan Floerchinger,et al.  Analytic continuation of functional renormalization group equations , 2011, 1112.4374.

[23]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[24]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[25]  M. Grisaru,et al.  Background-field method versus normal field theory in explicit examples: One-loop divergences in the S matrix and Green's functions for Yang--Mills and gravitational fields , 1975 .

[26]  C. Ross Found , 1869, The Dental register.

[27]  M. Visser Status of Hořava gravity: A personal perspective , 2011, 1103.5587.

[28]  Adriano Contillo,et al.  Renormalization group flow of Hořava-Lifshitz gravity at low energies , 2013 .

[29]  L. F. Abbott,et al.  The Background Field Method Beyond One Loop , 1981 .

[30]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  M.Reuter,et al.  Renormalization group flow of the Holst action , 2010, 1012.4280.

[33]  Petr Hořava General covariance in gravity at a Lifshitz point , 2011, 1101.1081.

[34]  Frank Saueressig,et al.  Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.

[35]  J. Jurkiewicz,et al.  Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.

[36]  C. Teitelboim Quantum mechanics of the gravitational field , 1982 .

[37]  Matt Visser,et al.  Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. , 2011, Physical review letters.

[38]  A validation of causal dynamical triangulations , 2011, 1110.6875.

[39]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[40]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[41]  R. Loll,et al.  A Proper time cure for the conformal sickness in quantum gravity , 2001, hep-th/0103186.

[42]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[43]  C. Teitelboim Proper-time gauge in the quantum theory of gravitation , 1983 .

[44]  S. Weinberg Effective Field Theory, Past and Future , 2009, 0908.1964.

[45]  B. Dewitt QUANTUM THEORY OF GRAVITY. II. THE MANIFESTLY COVARIANT THEORY. , 1967 .

[46]  O. Zanusso,et al.  The renormalization of fluctuating branes, the Galileon and asymptotic safety , 2012, 1212.4073.

[47]  Frank Saueressig,et al.  Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.

[48]  D. Orlando,et al.  The renormalizability of Hořava–Lifshitz-type gravities , 2009, 0905.0301.

[49]  J. York Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial‐value problem of general relativity , 1973 .

[50]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[51]  Astrid Eichhorn,et al.  Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.

[52]  D. Litim,et al.  Non-perturbative thermal flows and resummations , 2006, hep-th/0609122.

[53]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[54]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[55]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[56]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[57]  R. Percacci A Short introduction to asymptotic safety , 2011, 1110.6389.

[58]  D. Kazakov,et al.  Invariant renormalization for theories with nonlinear symmetry , 1977 .

[59]  Stanley Deser,et al.  Dynamical Structure and Definition of Energy in General Relativity , 1959 .

[60]  D. Orlando,et al.  On the perturbative expansion around a Lifshitz point , 2009, 0908.4429.

[61]  Martin Reuter,et al.  Bare action and regularized functional integral of asymptotically safe quantum gravity , 2008, 0811.3888.

[62]  H. Gies,et al.  Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.

[63]  Petr Hořava Membranes at Quantum Criticality , 2008, 0812.4287.

[64]  Steven Weinberg,et al.  What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.

[65]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[66]  M. Henneaux,et al.  A dynamical inconsistency of Horava gravity , 2009, 0912.0399.

[67]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[68]  F. Briscese,et al.  On the True Nature of Renormalizability in Horava-Lifshitz Gravity , 2012, 1205.1722.

[69]  E. Martinec,et al.  Gravity from the extension of spatial diffeomorphisms , 2010, 1002.4449.

[70]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[71]  S. Nagy,et al.  Lectures on renormalization and asymptotic safety , 2012, 1211.4151.

[72]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[73]  Frank Saueressig,et al.  The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.

[74]  Frank Saueressig,et al.  The universal RG machine , 2010, 1012.3081.