Oscillatory and asymptotic behaviour of a nonlinear second order neutral differential equation

AbstractIn this paper, necessary and sufficient conditions for the oscillation and asymptotic behaviour of solutions of the second order neutral delay differential equation (NDDE) $$\left[ {r(t)(y(t) - p(t)y(t - \tau ))'} \right]^\prime + q(t)G(y(h(t))) = 0$$ are obtained, where q, h ∈ C([0, ∞), ℝ) such that q(t) ≥ 0, r ∈ C(1) ([0, ∞), (0, ∞)), p ∈ C ([0, ∞), ℝ), G ∈ C (ℝ, ℝ) and τ ∈ ℝ+. Since the results of this paper hold when r(t) ≡ 1 and G(u) ≡ u, therefore it extends, generalizes and improves some known results.