Metastability of reversible finite state Markov processes

We prove the metastable behavior of reversible Markov processes on finite state spaces under minimal conditions on the jump rates. To illustrate the result we deduce the metastable behavior of the Ising model with a small magnetic field at very low temperature.

[1]  E. Olivieri,et al.  Large deviations and metastability , 2005 .

[2]  D. Vere-Jones Markov Chains , 1972, Nature.

[3]  R. Schonmann,et al.  Behavior of droplets for a class of Glauber dynamics at very low temperature , 1992 .

[4]  E. Olivieri,et al.  Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics , 2009 .

[5]  R. Kotecḱy,et al.  Droplet dynamics for asymmetric Ising model , 1993 .

[6]  R. Kotecḱy,et al.  Shapes of growing droplets—A model of escape from a metastable phase , 1994 .

[7]  Frank den Hollander Three Lectures on Metastability Under Stochastic Dynamics , 2009 .

[8]  den WThF Frank Hollander Metastability under stochastic dynamics , 2004 .

[9]  G. B. Arous,et al.  Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures , 1996 .

[10]  Nucleation in fluids ; some rigorous results , 2000 .

[11]  Droplet growth for three-dimensional Kawasaki dynamics , 2003 .

[12]  Roberto H. Schonmann,et al.  Critical droplets and metastability for a Glauber dynamics at very low temperatures , 1991 .

[13]  C. Landim,et al.  Metastability of reversible condensed zero range processes on a finite set , 2009, 0910.4089.

[14]  A. Bovier,et al.  Metastability in stochastic dynamics of disordered mean-field models , 1998, cond-mat/9811331.

[15]  Anton Bovier,et al.  Metastability in Glauber Dynamics in the Low-Temperature Limit: Beyond Exponential Asymptotics , 2001 .

[16]  C. Landim,et al.  Quenched scaling limits of trap models , 2009, 0902.3334.

[17]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[18]  Francesca R. Nardi,et al.  On the Essential Features of Metastability: Tunnelling Time and Critical Configurations , 2004 .

[19]  E. Olivieri,et al.  Metastability and nucleation for conservative dynamics , 2000 .

[20]  A. Bovier,et al.  Metastability and Low Lying Spectra¶in Reversible Markov Chains , 2000, math/0007160.

[21]  Antonio Galves,et al.  Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .

[22]  Elisabetta Scoppola Renormalization group for Markov chains and application to metastability , 1993 .

[23]  C. Landim,et al.  Tunneling and Metastability of Continuous Time Markov Chains , 2009, 0910.4088.

[24]  R. Richardson The International Congress of Mathematicians , 1932, Science.