Tensorial extensions of independent component analysis for multisubject FMRI analysis

[1]  Mark W. Woolrich,et al.  Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data , 2005, IEEE Transactions on Medical Imaging.

[2]  Fumikazu Miwakeichi,et al.  Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis , 2004, NeuroImage.

[3]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[4]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[5]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[6]  Lars Kai Hansen,et al.  A spatially robust ICA algorithm for multiple fMRI data sets , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[7]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[8]  P. Matthews,et al.  The role of ipsilateral premotor cortex in hand movement after stroke , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[10]  Markus Svensén,et al.  ICA of fMRI Group Study Data , 2002, NeuroImage.

[11]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[12]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[13]  B. Ripley,et al.  A new statistical approach to detecting significant activation in functional MRI , 2000, NeuroImage.

[14]  O. Witte,et al.  Functional Mapping of the Human Brain , 2000 .

[15]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[16]  E. DeYoe,et al.  Reduction of physiological fluctuations in fMRI using digital filters , 1996, Magnetic resonance in medicine.

[17]  S C Strother,et al.  Commentary and Opinion: I. Principal Component Analysis, Variance Partitioning, and “Functional Connectivity” , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  M. Raichle,et al.  Blood flow changes in human somatosensory cortex during anticipated stimulation , 1995, Nature.

[19]  Michael Posner,et al.  Modulation by instruction , 1995, Nature.

[20]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[21]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[22]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[23]  Didier G. Leibovi An introduction to Multiway Methods for Multi-Subject fMRI experiment , 2001 .

[24]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[25]  Y. Z. Cao,et al.  A PARAFAC algorithm using penalty diagonalization error (PDE) for three-way data array resolution. , 2000, The Analyst.

[26]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[27]  A. J. Bell,et al.  Analysis of fMRI Data byBlind Separation Into Independent Spatial Components , 1998 .

[28]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[29]  H. Law Research methods for multimode data analysis , 1984 .

[30]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[31]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[32]  David J McGonigle,et al.  Variability in FMRI : A Re-Examination of Intersession , 2022 .