Decompositions of edge-colored digraphs: A new technique in the construction of constant-weight codes and related families

We demonstrate that certain Johnson-type bounds are asymptotically exact for a variety of classes of codes, namely, constant-composition codes, nonbinary constant-weight codes and multiply constant-weight codes. This was achieved via an interesting application of the theory of decomposition of edge-colored digraphs.

[1]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[2]  Mehul Motani,et al.  Subblock-Constrained Codes for Real-Time Simultaneous Energy and Information Transfer , 2015, IEEE Transactions on Information Theory.

[3]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[4]  Yeow Meng Chee,et al.  Linear Size Optimal $q$-ary Constant-Weight Codes and Constant-Composition Codes , 2010, IEEE Transactions on Information Theory.

[5]  Sylvain Guilley,et al.  Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions , 2014, IEEE Transactions on Information Theory.

[6]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[7]  Richard M. Wilson,et al.  Decompositions of Edge-Colored Complete Graphs , 2000, J. Comb. Theory, Ser. A.

[8]  Mattias Svanström Constructions of ternary constant-composition codes with weight three , 2000, IEEE Trans. Inf. Theory.

[9]  Hui Zhang,et al.  Optimal Ternary Constant-Weight Codes of Weight Four and Distance Six , 2010, IEEE Transactions on Information Theory.

[10]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[11]  Hui Zhang,et al.  Optimal Quaternary Constant-Weight Codes With Weight Four and Distance Five , 2013, IEEE Transactions on Information Theory.

[12]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  Sven Hartmann,et al.  Superpure digraph designs , 2002 .

[15]  Hui Zhang,et al.  Optimal Ternary Constant-Weight Codes With Weight 4 and Distance 5 , 2012, IEEE Transactions on Information Theory.

[16]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[17]  Patric R. J. Östergård,et al.  Bounds and constructions for ternary constant-composition codes , 2002, IEEE Trans. Inf. Theory.

[18]  Gennian Ge,et al.  Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three , 2008, IEEE Transactions on Information Theory.

[19]  Yeow Meng Chee,et al.  Constructions for $q$-Ary Constant-Weight Codes , 2007, IEEE Transactions on Information Theory.

[20]  Gennian Ge,et al.  Optimal Ternary Constant-Composition Codes of Weight Four and Distance Five , 2011, IEEE Transactions on Information Theory.

[21]  M. Svanstrom Constructions of ternary constant-composition codes with weight three , 2000 .

[22]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[23]  Hui Zhang,et al.  Hanani triple packings and optimal $$q$$q-ary codes of constant weight three , 2015, Des. Codes Cryptogr..

[24]  Yeow Meng Chee,et al.  The Sizes of Optimal $q$ -Ary Codes of Weight Three and Distance Four: A Complete Solution , 2008, IEEE Transactions on Information Theory.

[25]  Charles J. Colbourn,et al.  On constant composition codes , 2006, Discret. Appl. Math..

[26]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[27]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .

[28]  Alan C. H. Ling,et al.  Thickly-resolvable block designs , 2016, Australas. J Comb..

[29]  Charles J. Colbourn,et al.  Covering and packing for pairs , 2013, J. Comb. Theory, Ser. A.

[30]  Peter Keevash The existence of designs , 2014, 1401.3665.

[31]  A. J. Han Vinck,et al.  On the Constructions of Constant-Weight Codes , 1998, IEEE Trans. Inf. Theory.

[32]  Gou Hosoya,et al.  国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .

[33]  Yeow Meng Chee,et al.  Estimates on the Size of Symbol Weight Codes , 2011, IEEE Transactions on Information Theory.

[34]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[35]  Xin Wang,et al.  New Bounds and Constructions for Multiply Constant-Weight Codes , 2016, IEEE Transactions on Information Theory.