Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis

Abstract Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved heterostructure for solar energy conversion. This hybrid nanoheterostructure cooperates well with cofactors to achieve efficient hydrogen evolution under visible light illumination. The enhanced photocatalytic performance of the heterostructure can be attributed to the unique three-dimensional (3D) hollow architectural framework of HCNS as a polymeric scaffold to form intimate interfacial contact with the QDs by a self-assembly strategy to facilitate surface kinetics of charge separation and mass transfer. Such inorganic-polymer hybrid nanoarchitectures based on controlled deposition of stiff QDs onto the flexible HCNS surface provide a valuable platform for constructing stable photoredox systems for solar-to-chemical conversion. This result promises the great potentials of biostructurally-mimic hollow soft semiconductors in developing photofunctional architectures, with an ample choice of secondary guest species to selectively engineer the interface physicochemistry of the hollow sphere for solar application.

[1]  Lei Ge,et al.  Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots , 2012 .

[2]  M. Jaroniec,et al.  All‐Solid‐State Z‐Scheme Photocatalytic Systems , 2014, Advanced materials.

[3]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[4]  Mingyuan Gao,et al.  Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core−Shell Structure , 2004 .

[5]  N. Dasgupta,et al.  25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications , 2014, Advanced materials.

[6]  Xinchen Wang,et al.  Helical graphitic carbon nitrides with photocatalytic and optical activities. , 2014, Angewandte Chemie.

[7]  Yi Wang,et al.  Shape-controlled synthesis of metal nanocrystals , 2013 .

[8]  Markus Antonietti,et al.  Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles , 2012, Nature Communications.

[9]  Jiaguo Yu,et al.  Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. , 2011, Journal of the American Chemical Society.

[10]  K. Domen,et al.  Oxidation of water under visible-light irradiation over modified BaTaO2N photocatalysts promoted by tungsten species. , 2013, Angewandte Chemie.

[11]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[12]  Hui‐Ming Cheng,et al.  CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light , 2014 .

[13]  M. Bhunia,et al.  Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. , 2014, Angewandte Chemie.

[14]  Jianrong Qiu,et al.  Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine , 2013, Scientific Reports.

[15]  Hua Xu,et al.  Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. , 2015, Angewandte Chemie.

[16]  Xiaoqing Qiu,et al.  Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution , 2014, Advanced materials.

[17]  Mietek Jaroniec,et al.  Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. , 2014, Angewandte Chemie.

[18]  Xinchen Wang,et al.  Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution , 2014 .

[19]  X. Lou,et al.  TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. , 2014, Angewandte Chemie.

[20]  Say Chye Joachim Loo,et al.  In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation , 2013 .

[21]  Binbin Chang,et al.  Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism , 2013 .

[22]  M. Antonietti,et al.  Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. , 2014, Angewandte Chemie.

[23]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[24]  Zhengxiao Guo,et al.  Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride** , 2014, Angewandte Chemie (International Ed. in English).

[25]  Hua Zhang,et al.  One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. , 2015, Angewandte Chemie.

[26]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[27]  Jiaguo Yu,et al.  Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. , 2013, ACS applied materials & interfaces.

[28]  Sean C. Smith,et al.  Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. , 2011, Journal of the American Chemical Society.

[29]  K. Müllen,et al.  Titania Nanosheet‐Mediated Construction of a Two‐Dimensional Titania/Cadmium Sulfide Heterostructure for High Hydrogen Evolution Activity , 2014, Advanced materials.

[30]  S. Mann,et al.  Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly. , 2014, Angewandte Chemie.

[31]  Jinshui Zhang,et al.  Sol processing of conjugated carbon nitride powders for thin-film fabrication. , 2015, Angewandte Chemie.

[32]  Caijin Huang,et al.  Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis. , 2015, Nanoscale.

[33]  A. Krasheninnikov,et al.  Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. , 2014, Angewandte Chemie.

[34]  Jason M. Smith,et al.  Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. , 2014, Angewandte Chemie.

[35]  H. Möhwald,et al.  Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. , 2014, Angewandte Chemie.

[36]  Can Yang,et al.  Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface , 2014, Advanced materials.

[37]  Xinchen Wang,et al.  A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. , 2012, Angewandte Chemie.

[38]  X. Lou,et al.  Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. , 2013, Angewandte Chemie.

[39]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[40]  Jae Hong Kim,et al.  Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. , 2012, Angewandte Chemie.

[41]  G. Stucky,et al.  Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. , 2013, Angewandte Chemie.

[42]  Hui‐Ming Cheng,et al.  Graphene‐Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities , 2012 .

[43]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.