Ultra-sensitive fluorescent proteins for imaging neuronal activity

Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

[1]  A. Hodgkin,et al.  Depolarization and calcium entry in squid giant axons , 1971, The Journal of physiology.

[2]  Baker Pf,et al.  Depolarization and calcium entry in squid giant axons. , 1971 .

[3]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[4]  M Ikura,et al.  Molecular and structural basis of target recognition by calmodulin. , 1995, Annual review of biophysics and biomolecular structure.

[5]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[6]  S. Martin,et al.  Target recognition by calmodulin: Dissecting the kinetics and affinity of interaction using short peptide sequences , 1996, Protein science : a publication of the Protein Society.

[7]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[8]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[9]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[10]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[11]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[12]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[14]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[15]  Stephen L. Johnson,et al.  nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. , 1999, Development.

[16]  R. Kerr,et al.  Optical Imaging of Calcium Transients in Neurons and Pharyngeal Muscle of C. elegans , 2000, Neuron.

[17]  N. Chaffey Red fluorescent protein , 2001 .

[18]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[19]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[20]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[21]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Ia‐type K+ channels control action potential backpropagation , 2003, The Journal of physiology.

[22]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[23]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[24]  William C Hahn,et al.  Lentivirus-delivered stable gene silencing by RNAi in primary cells. , 2003, RNA.

[25]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Keyvanfar,et al.  Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. , 2004, Blood.

[27]  Karel Svoboda,et al.  Stereotyped Odor-Evoked Activity in the Mushroom Body of Drosophila Revealed by Green Fluorescent Protein-Based Ca2+ Imaging , 2004, The Journal of Neuroscience.

[28]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[29]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[30]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[31]  Alexander Borst,et al.  In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies , 2005, The Journal of Neuroscience.

[32]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[33]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[34]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[35]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[36]  Alexander Borst,et al.  Heterogeneity in synaptic transmission along a Drosophila larval motor axon , 2005, Nature Neuroscience.

[37]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[38]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[39]  Junichi Nakai,et al.  Characterization and Subcellular Targeting of GCaMP-Type Genetically-Encoded Calcium Indicators , 2008, PloS one.

[40]  Lindy Holden-Dye,et al.  The Actions of Caenorhabditis elegans Neuropeptide-Like Peptides (NLPs) on Body Wall Muscle of Ascaris suum and Pharyngeal Muscle of C. elegans , 2008, Acta biologica Hungarica.

[41]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[42]  H. Sondermann,et al.  Structural basis for calcium sensing by GCaMP2. , 2008, Structure.

[43]  Masahiko Hibi,et al.  Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish , 2008, Proceedings of the National Academy of Sciences.

[44]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[45]  L. Zon,et al.  Transparent adult zebrafish as a tool for in vivo transplantation analysis. , 2008, Cell stem cell.

[46]  Leon Lagnado,et al.  A genetically-encoded reporter of synaptic activity in vivo , 2009, Nature Methods.

[47]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[48]  Jasper Akerboom,et al.  Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design , 2009, Journal of Biological Chemistry.

[49]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[50]  N. Nishimura,et al.  Deep tissue multiphoton microscopy using longer wavelength excitation. , 2009, Optics express.

[51]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[52]  Shihab A. Shamma,et al.  Dichotomy of functional organization in the mouse auditory cortex , 2010, Nature Neuroscience.

[53]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[54]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[55]  Vijay Iyer,et al.  Ephus: Multipurpose Data Acquisition Software for Neuroscience Experiments , 2010, Front. Neural Circuits.

[56]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[57]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[58]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[59]  G. Tamás,et al.  Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons , 2011, Proceedings of the National Academy of Sciences.

[60]  M. Goll,et al.  Transgenerational analysis of transcriptional silencing in zebrafish. , 2011, Developmental biology.

[61]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[62]  J. Douglas Armstrong,et al.  Bioinformatics Applications Note Systems Biology Simple Neurite Tracer: Open Source Software for Reconstruction, Visualization and Analysis of Neuronal Processes , 2022 .

[63]  Li I. Zhang,et al.  Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple Cells , 2011, Neuron.

[64]  Nicholas J. Priebe,et al.  Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[65]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[66]  Lin Tian,et al.  Activity in motor-sensory projections reveals distributed coding in somatosensation , 2012, Nature.

[67]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[68]  Hongkui Zeng,et al.  A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging In Vivo , 2012, The Journal of Neuroscience.

[69]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[70]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[71]  D. Maclaurin,et al.  Optical recording of action potentials in mammalian neurons using a microbial rhodopsin , 2011, Nature Methods.

[72]  D. Hansel,et al.  The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map , 2012, The Journal of Neuroscience.

[73]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[74]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..