Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids: Influence of Potential, Cation Size, and Temperature

The interfaces formed at glassy carbon electrodes in three low-temperature ionic liquids (1-methyl-3-ethylimidazolium chloride, emimCl; 1-methyl-3-butylimidazolium chloride, bmimCl; and 1-methyl-3-hexylimidazolium chloride, hmimCl) were investigated by cyclic voltammetry and impedance spectroscopy. The potential dependence of the differential double layer capacitance was measured at several temperatures between 80 and 140 °C, and the temperature response was found to be broadly similar to that obtained with high-temperature molten salts. The differential capacitance/potential curves have a minimum and two side branches. The minimum corresponds to the point of zero charge. The differential capacitance increases in the order hmimCl < bmimCl < emimCl because the double layer is thinner when imidazolium (Rmim) cations with shorter alkyl chain lengths are used. The impedance spectra and capacitance curves indicate that cations are adsorbed at the open-circuit potential and that their surface excess concentrati...

[1]  Frank Endres,et al.  Ionic liquids: solvents for the electrodeposition of metals and semiconductors. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  A. Haymet,et al.  Molten salts near a charged surface: integral equation approximation for a model of KCl , 2001 .

[3]  R. G. Evans,et al.  Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  C. Wakai,et al.  How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. , 2005, The journal of physical chemistry. B.

[5]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[6]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[7]  Xinlong Wang,et al.  Ionic liquid-based electrolytes for capacitor applications , 2007 .

[8]  R. Rowell,et al.  Physical Chemistry of Surfaces, 6th ed. , 1998 .

[9]  F. Bright,et al.  Comment on "How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy". , 2006, The journal of physical chemistry. B.

[10]  M. Shara,et al.  Predicting physical properties of ionic liquids. , 2006, Physical chemistry chemical physics : PCCP.

[11]  V. Koch,et al.  Differential Capacitance Measurements in Solvent‐Free Ionic Liquids at Hg and C Interfaces , 1997 .

[12]  R. J. Gale,et al.  The electrical double layer at mercury in room temperature aluminum chloride: 1-butylpyridinium chloride ionic liquids , 1980 .

[13]  K. B. Oldham A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface , 2008 .

[14]  P. Licence,et al.  Ionic liquids in vacuo: analysis of liquid surfaces using ultra-high-vacuum techniques. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[15]  B. Conway The role of solvation, complementary to electronic effects, in specific adsorption of ions at electrodes , 1997 .

[16]  O. Petrii,et al.  Real surface area measurements in electrochemistry , 1991 .

[17]  T. Pajkossy,et al.  Impedance of rough capacitive electrodes , 1994 .

[18]  Y. Sasaki,et al.  In situ FT-IR spectroscopic observation of a room-temperature molten salt | gold electrode interphase , 2003 .

[19]  V. Koch,et al.  Nonaqueous electrolytes for electrochemical capacitors: Imidazolium cations and inorganic fluorides with organic carbonates , 1997 .

[20]  Douglas Henderson,et al.  On the influence of ionic association on the capacitance of an electrical double layer , 2001 .

[21]  U. Kaatze,et al.  Dielectric Spectroscopy of the Room Temperature Molten Salt Ethylammonium Nitrate , 2001 .

[22]  Julian L. Roberts,et al.  Electrochemistry for Chemists , 1995 .

[23]  A. Bond,et al.  Practical considerations associated with voltammetric studies in room temperature ionic liquids. , 2005, The Analyst.

[24]  Kiyoshi Kawamura,et al.  Polymeric Carbons: Carbon Fibre, Glass and Char , 1976 .

[25]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[26]  T. Pajkossy,et al.  Impedance spectroscopy at interfaces of metals and aqueous solutions — Surface roughness, CPE and related issues , 2005 .

[27]  S. Saha,et al.  Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure , 2003 .

[28]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[29]  L. Blum Theory of electrified interfaces , 1977 .

[30]  Douglas Henderson,et al.  Monte Carlo study of the capacitance of the double layer in a model molten salt , 1999 .

[31]  R. D. Levie,et al.  The influence of surface roughness of solid electrodes on electrochemical measurements , 1965 .

[32]  Ian R. Dunkin,et al.  Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes , 2001 .

[33]  Marketa Zukalova,et al.  Interaction of nanodiamond with in situ generated sp-carbon chains probed by Raman spectroscopy , 2006 .

[34]  D. I. Leikis,et al.  Investigation of the electric double layer in salt melts , 1964 .

[35]  K. Seddon,et al.  Influence of chloride, water, and organic solvents on the physical properties of ionic liquids , 2000 .

[36]  K. Marsh,et al.  Room temperature ionic liquids and their mixtures—a review , 2004 .

[37]  Dieter M. Kolb,et al.  Double layer capacitance of Pt(111) single crystal electrodes , 2001 .

[38]  D. Inman,et al.  Adsorption and the Differential Capacitance of the Electrical Double-layer at Platinum/Halide Metal Interfaces , 1965, Nature.

[39]  T. Ohsaka,et al.  Measurements of differential capacitance in room temperature ionic liquid at mercury, glassy carbon and gold electrode interfaces , 2007 .

[40]  S. Baldelli,et al.  Surface Spectroscopy of Room-temperature Ionic Liquids on a Platinum Electrode: A Sum Frequency Generation Study , 2004 .

[41]  J. Wadhawan,et al.  Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids , 2000 .

[42]  John Meurig Thomas,et al.  Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by X-ray photo-electron spectroscopy , 1971 .

[43]  D. Inman,et al.  The electrical double layer in molten salts: Part 2. The double-layer capacitance , 1970 .

[44]  J. Rubim,et al.  Surface-enhanced Raman scattering at the silver electrode/ionic liquid (BMIPF6) interface. , 2006, The journal of physical chemistry. B.

[45]  L. A. Pesin,et al.  A new structural model of glass-like carbon , 2002 .

[46]  G. Láng,et al.  Changes of the specific surface energy of gold due to the chemisorption of sulphate , 1995 .

[47]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[48]  S. Baldelli,et al.  Sum frequency generation spectroscopy and double-layer capacitance studies of the 1-butyl-3-methylimidazolium dicyanamide-platinum interface. , 2006, The journal of physical chemistry. B.

[49]  A. Kisza,et al.  The capacitance of the diffuse layer of electric double layer of electrodes in molten salts , 2006 .

[50]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[51]  R. J. Hunter Foundations of Colloid Science , 1987 .

[52]  A. Lewandowski,et al.  Carbon–ionic liquid double-layer capacitors , 2004 .

[53]  R. Durand,et al.  Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes , 1980 .

[54]  Robin D. Rogers,et al.  Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation , 2001 .

[55]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[56]  S. Baldelli Probing electric fields at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry. , 2005, The journal of physical chemistry. B.

[57]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .

[58]  H. Gerischer The impact of semiconductors on the concepts of electrochemistry , 1990 .

[59]  John O’M. Bockris,et al.  Surface Electrochemistry: A Molecular Level Approach , 1993 .

[60]  Takaya Sato,et al.  Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications , 2006 .

[61]  D. Lovering,et al.  Electrochemistry in Molten Salts , 1972 .