Tumour suppressor genes.

Genes responsible for the hereditary predisposition to a variety of human cancers have now been isolated. Their function seems to be part of complex signalling pathways involved in the control of cellular differentiation and the cell cycle. The presence of a single copy of these genes appears to be sufficient to ensure normal development, i.e. prevents tumorigenesis, and has earned them the name--tumour suppressor genes.

[1]  E. E. Gresch Genetic Alterations During Colorectal-Tumor Development , 1989 .

[2]  J. Cowell,et al.  Isolation of chromosome-specific DNA sequences from an Alu polymerase chain reaction library to define the breakpoint in a patient with a constitutional translocation t(1;13) (q22;q12) and ganglioneuroblastoma. , 1992, Oncogene.

[3]  L. Strong,et al.  Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. , 1990, Science.

[4]  S. Altschul,et al.  Identification of FAP locus genes from chromosome 5q21. , 1991, Science.

[5]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[6]  F. Tamanoi,et al.  The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae , 1990, Cell.

[7]  R. Sager Genetic suppression of tumor formation. , 1985, Advances in cancer research.

[8]  J. Bard,et al.  The candidate Wilms' tumour gene is involved in genitourinary development , 1990, Nature.

[9]  P. Nowell,et al.  Receptor protein-tyrosine phosphatase gamma is a candidate tumor suppressor gene at human chromosome region 3p21. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Orkin,et al.  Development of homozygosity for chromosome 11p markers in Wilms' tumour , 1984, Nature.

[11]  A. Hogg,et al.  Detection of heterozygous mutations in the RB1 gene in retinoblastoma patients using single-strand conformation polymorphism analysis and polymerase chain reaction sequencing. , 1992, Oncogene.

[12]  B. Gallie,et al.  Identification of germline and somatic mutations affecting the retinoblastoma gene. , 1988, Science.

[13]  A. Feinberg,et al.  Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours , 1984, Nature.

[14]  R. Weinberg,et al.  Tumor suppressor genes. , 1991, Science.

[15]  W. Benedict,et al.  Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. , 1983, Science.

[16]  A. Sorsby,et al.  THE GENETICS OF RETINOBLASTOMA* , 1944, The British journal of ophthalmology.

[17]  V. Rotter,et al.  Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells. , 1990, Oncogene.

[18]  Stephen H. Friend,et al.  Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product , 1988, Nature.

[19]  W. Cavenee,et al.  Familial predisposition to Wilms' tumour does not map to the short arm of chromosome 11 , 1988, Nature.

[20]  K. Kinzler,et al.  Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. , 1991, Science.

[21]  A. Goddard,et al.  Preferential germline mutation of the paternal allele in retinoblastoma , 1989, Nature.

[22]  A. Knudson,et al.  Mutation and cancer: neuroblastoma and pheochromocytoma. , 1972, American journal of human genetics.

[23]  J. Neel,et al.  Genetics of retinoblastoma. , 1951, A.M.A. archives of ophthalmology.

[24]  Stephen H. Friend,et al.  A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma , 1986, Nature.

[25]  M. Pericak-Vance,et al.  Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene , 1987, Cell.

[26]  T. Maimets,et al.  p53 interacts with p34cdc2 in mammalian cells: implications for cell cycle control and oncogenesis. , 1990, Oncogene.

[27]  A. Poustka,et al.  Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping , 1990, Nature.

[28]  P. O’Connell,et al.  The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21 , 1990, Cell.

[29]  J. Cowell,et al.  The ability of normal mouse cells to reduce the malignant potential of transformed mouse bladder epithelial cells depends on their somatic origin , 1984, International Journal of Cancer.

[30]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[31]  D. Housman,et al.  Alternative splicing and genomic structure of the Wilms tumor gene WT1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Kathleen R. Cho,et al.  Identification of a chromosome 18q gene that is altered in colorectal cancers. , 1990, Science.

[33]  Y. Nakamura,et al.  Genetic alterations during colorectal-tumor development. , 1988, The New England journal of medicine.

[34]  A. Yen,et al.  Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. , 1989, Science.

[35]  D. Housman,et al.  Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome , 1991, Cell.

[36]  B. Brownstein,et al.  Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. , 1990, Science.

[37]  B. Gallie,et al.  Somatic inactivation of genes on chromosome 13 is a common event in retinoblastoma , 1983, Nature.

[38]  M. Jay,et al.  Application of intragenic DNA probes in prenatal screening for retinoblastoma gene carriers in the United Kingdom. , 1990, Archives of disease in childhood.

[39]  B. Gallie,et al.  Mutations in the RB1 gene and their effects on transcription , 1989, Molecular and cellular biology.

[40]  R. Lewis Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17 , 1988 .

[41]  U. Francke,et al.  Chromosomal imbalance in the Aniridia-Wilms' tumor association: 11p interstitial deletion. , 1978, Pediatrics.

[42]  T. Curran,et al.  Binding of the Wilms' tumor locus zinc finger protein to the EGR-1 consensus sequence. , 1990, Science.

[43]  Wen-Hwa Lee,et al.  SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene , 1988, Cell.

[44]  E. Stanbridge,et al.  The role of differentiation in the suppression of tumorigenicity in human cell hybrids , 1982, International journal of cancer.

[45]  M. King,et al.  Linkage of early-onset familial breast cancer to chromosome 17q21. , 1990, Science.

[46]  D. Comings A general theory of carcinogenesis. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[47]  D. Housman,et al.  Smallest region of overlap in Wilms tumor deletions uniquely implicates an 11p13 zinc finger gene as the disease locus. , 1991, Genomics.

[48]  J. Yunis,et al.  Retinoblastoma and subband deletion of chromosome 13. , 1978, American journal of diseases of children.

[49]  J. Cowell,et al.  Loss of heterozygosity in Wilms' tumour involves two distinct regions of chromosome 11. , 1990, Oncogene.

[50]  C. Mathew,et al.  A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10 , 1987, Nature.

[51]  D. Housman,et al.  Evidence for WT1 as a Wilms tumor (WT) gene: intragenic germinal deletion in bilateral WT. , 1991, American journal of human genetics.

[52]  A. Knudson,et al.  Mutation and cancer: a model for Wilms' tumor of the kidney. , 1972, Journal of the National Cancer Institute.

[53]  M. Warburg,et al.  Aniridia, Cataract and Gonadoblastoma in a Mentally Retarded Girl with Deletion of Chromosome 11 , 1978 .

[54]  C. Marshall Tumor suppressor genes , 1991, Cell.

[55]  B. Gallie,et al.  Genetic origin of mutations predisposing to retinoblastoma. , 1985, Science.

[56]  D. Housman,et al.  Structural rearrangements of the WT1 gene in Wilms' tumour cells. , 1991, Oncogene.

[57]  J. Cowell The nuclear oncoproteins: RB and p53. , 1990, Seminars in cancer biology.

[58]  J. McPherson,et al.  Identification of deletion mutations and three new genes at the familial polyposis locus , 1991, Cell.

[59]  T. P. Dryja,et al.  Expression of recessive alleles by chromosomal mechanisms in retinoblastoma , 1983, Nature.

[60]  Raymond L. White,et al.  Homozygosity of chromosome 13 in retinoblastoma. , 1984, The New England journal of medicine.

[61]  A. Hogg,et al.  Genetics and cytogenetics of retinoblastoma. , 1992, Cancer Genetics and Cytogenetics.

[62]  D. Lane,et al.  T antigen is bound to a host protein in SY40-transformed cells , 1979, Nature.

[63]  E. Buckley,et al.  Oncogenic point mutations in the human retinoblastoma gene: their application to genetic counseling. , 1989, The New England journal of medicine.

[64]  P. O'Connell,et al.  Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus , 1990, Cell.

[65]  K. Münger,et al.  The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. , 1989, Science.

[66]  K. Kinzler,et al.  Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. , 1991, Science.

[67]  H. Harris The Analysis of Malignancy by Cell Fusion: the Position in Updated Version Citing Articles E-mail Alerts , 2013 .

[68]  A. Hogg,et al.  Oncogenic point mutations in exon 20 of the RB1 gene in families showing incomplete penetrance and mild expression of the retinoblastoma phenotype. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. H. Rider,et al.  Chromosome 5 allele loss in human colorectal carcinomas , 1987, Nature.

[70]  F. C. Lucibello,et al.  Localization of the gene for familial adenomatous polyposis on chromosome 5 , 1987, Nature.

[71]  B. Horsthemke Genetics and cytogenetics of retinoblastoma. , 1992, Cancer genetics and cytogenetics.

[72]  E. Stanbridge Human tumor suppressor genes. , 1990, Annual review of genetics.